Using Dune-PDELab for Two-Phase Flow in Porous Media

  • Christoph Grüninger
Conference paper


In this work, two-phase flow in porous media is simulated numerically with Discontinuous Galerkin methods. The Symmetrical Interior Penalty Galerkin method (SIPG), the Non-symmetrical Interior Penalty Galerkin method (NIPG) and the scheme from Oden, Babuška and Baumann (OBB) are considered. The terminology and the examples are taken from soil science. First, the Richards equation is solved, then a two-phase flow problem in the pressure-saturation formulation. The results of a final year project in computer science are presented and it is shown what a student can achieve with Dune-PDELab within six months.


Porous Medium Capillary Pressure Relative Permeability Discontinuous Galerkin Discontinuous Galerkin Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bastian, P.: Numerical Computation of Multiphase Flows in Porous Media. Habilitation thesis. Christian-Albrechts-Universität Kiel (1999)Google Scholar
  3. 3.
    Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika 46(2), 294–315 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Braess, D.: Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Dumbser, M., Gassner, G., Munz, C.-D.: Discontinuous Galerkin-Verfahren für zeitabhängige Advektions-Diffusions-Gleichungen. Jahresbericht der DMV 113(3), 87–123 (2009)MathSciNetGoogle Scholar
  6. 6.
    Epshteyn, Y.: HP primal Discontinuous Galerkin Finite Element Methods for Two-phase Flow in Porous Media. Ph.D. thesis. University of Pittsburgh (2007)Google Scholar
  7. 7.
    Ern, A., Mozolevski, I., Schuh, L.: Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows. C. R. Acad. Sci. Paris, Ser. I 347, 551–554 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta Discontinuous Galerkin method for the Shallow-Water Equations with flooding and drying. Int. J. Numer. Meth. Fluids 58(1), 1–25 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Giese, W.: Numerische Behandlung einer linearen Reaktions-Diffusions-Gleichung mit einer Anwendung in der interzellulären Kommunikation bei Hefezellen. Master thesis. Humboldt-Universität zu Berlin (2010)Google Scholar
  10. 10.
    Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G.: A Comparison of Numerical Simulation Models For One-Dimensional Infiltration. Soil Sci. Soc. Am. J. 41, 285–294 (1977)CrossRefGoogle Scholar
  11. 11.
    Helmig, R.: Multiphase flow and transport processes in the subsurface. Springer, Berlin (1997)Google Scholar
  12. 12.
    Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008)Google Scholar
  14. 14.
    Schwartz, M.O.: Modelling groundwater contamination above the Asse 2 medium-level nuclear waste repository, Germany. Environmental Earth Sciences 59(2), 277–286 (2009), doi:10.1007/s12665-009-0025-5CrossRefGoogle Scholar
  15. 15.
    Sochala, Pierre: Méthodes numériques pour les écoulements souterrains et couplage avec le ruissellement. Ph.D. thesis. Ecole des Ponts ParisTech, Paris (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Hydromechanik und HydrosystemmodellierungUniversität StuttgartStuttgartGermany

Personalised recommendations