Skip to main content

MetroNet: A Metropolitan Simulation Model Based on Commuting Processes

  • Conference paper
  • 820 Accesses

Part of the Lecture Notes in Computer Science book series (LNCCN,volume 7166)

Abstract

The aim of this work is to identify a set of fundamental rules that govern the interactions within urban systems at the metropolitan scale. For that, we developed an USM (Urban Simulation Model) specifically designed to study the evolution and dynamics of systems of cities. Our model is innovative in its structure: it is a superposition of cellular automata and agent based modeling approaches (that are essentially spatial analyses) and a complex network approach (that is essentially a topological analysis). This implies that in our model, the local activities and interaction of agents give rise to the global urban structure and network that in turn affects the agents’ cognition, behavior, movement and action in the city and so on in circular causality. The model simulates commuting patterns of agents within a metropolis. The agents in our model represent workers who look for working places, the nodes represent urban employment centers, and the links represent commuters. Our results address three issues: the first suggests that the perception of urban boundaries plays a significant role in the metropolitan evolution in terms of network topology. This means that the existence of business centers, located in proximity to each other (but belonging to different municipalities) may lead to the emergence of new centers at the metropolis scale. The second issue concerns urban segregation; our results suggest that the location preferences of the agents regarding proximity to similar/different agents have a major affect not only on the urban morphology but also on the topology of the urban network. The third and last issue concerns the size distributions of agents in our model; these distributions correspond to all types of homogenous distributions observed in real system of cities.

Keywords

  • urban complexity
  • urban networks
  • agent based models
  • urban simulation models

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 409–410 (1998)

    CrossRef  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    MathSciNet  CrossRef  Google Scholar 

  3. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    CrossRef  Google Scholar 

  4. Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A., Havlin, S.: Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94, 188701 (2005)

    CrossRef  Google Scholar 

  5. Paul, G., Sreenivasan, S., Havlin, S., Stanley, H.E.: Optimization of network robustness to random breakdowns. Physica A 370, 854–862 (2006)

    CrossRef  Google Scholar 

  6. Jeong, H., Tombora, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    CrossRef  Google Scholar 

  7. Newman, M., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. PNAS 99, 2566–2572 (2002)

    MATH  CrossRef  Google Scholar 

  8. Jeong, H., Neda, Z., Barabási, A.L.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61, 567–572 (2003)

    CrossRef  Google Scholar 

  9. Blumenfeld-Lieberthal, E.: The topology of transportation networks: a comparison between different economies. Networks and Spatial Economics 9, 427–458 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Patuelli, R., Reggiani, A., Nijkamp, P., Bade, F.J.: The evolution of the commuting network in Germany: spatial and connectivity patterns. Journal of Transport and Land Use 2(3) (2010)

    Google Scholar 

  11. Batty, M.: Cities and complexity. The MIT Press, Cambridge (2005)

    Google Scholar 

  12. Porutgali, J.: Complexity, Cognition and the City. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  13. Portugali, J.: Self-Organization and the City. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Alexander, C.: A city is not a tree. Architectural Forum 122(1), 58-61 and 122(2), 58-62 (1965)

    Google Scholar 

  15. Batty, M., Longley, P.: Fractal Cities: A Geometry of Form and Function. Academic Press, London (1994)

    MATH  Google Scholar 

  16. Benenson, I., Torrens, P.: Geosimulation: Automata-based modeling of urban phenomena. John Wiley and Sons Ltd., West Sussex (2004)

    CrossRef  Google Scholar 

  17. White, R., Engelen, G.: Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A 25, 1175–1199 (1993)

    CrossRef  Google Scholar 

  18. Andersson, C., Frenken, K., Hellervik, A.: A complex network approach to urban growth. Environment and Planning A 38, 1941–1964 (2006)

    CrossRef  Google Scholar 

  19. Porta, S., Crucittib, P., Latora, V.: The network analysis of urban streets: A dual approach. Physica A 369, 853–866 (2006)

    CrossRef  Google Scholar 

  20. Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environment and Planning B 31(1), 151–162 (2004)

    CrossRef  Google Scholar 

  21. Zipf, G.K.: National unity and disunity. The Principia Press, Bloomington Indiana (1941)

    Google Scholar 

  22. Krugman, P.: The Self-Organizing Economy. Blackwell, Cambridge (1996)

    Google Scholar 

  23. Batty, M.: Rank clocks. Nature 444, 592–596 (2006)

    CrossRef  Google Scholar 

  24. Geoffery, F., Linsker, R.: Synchronous neural activity in scale-free network models versus random network models. PNAS 102(28), 9948–9953 (2005)

    CrossRef  Google Scholar 

  25. Benguigui, L., Blumenfeld-Lieberthal, E.: A new classification of city size distributions. Computers, Environment and Urban Systems 31(6), 648–666 (2006)

    CrossRef  Google Scholar 

  26. Haggett, P.: Models in geography: the Madingley lectures for 1965. Edited with Chorley, R.J., Methuen & Co. Ltd., London (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 IFIP International Federation for Information Processing

About this paper

Cite this paper

Blumenfeld-Lieberthal, E., Portugali, J. (2012). MetroNet: A Metropolitan Simulation Model Based on Commuting Processes. In: Kuipers, F.A., Heegaard, P.E. (eds) Self-Organizing Systems. IWSOS 2012. Lecture Notes in Computer Science, vol 7166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28583-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28583-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28582-0

  • Online ISBN: 978-3-642-28583-7

  • eBook Packages: Computer ScienceComputer Science (R0)