Advertisement

Smooth Coordination and Navigation for Multiple Differential-Drive Robots

  • Jamie Snape
  • Stephen J. Guy
  • Jur van den Berg
  • Dinesh Manocha
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

Multiple independent robots sharing the workspace need to be able to navigate to their goals while avoiding collisions with each other. In this paper, we describe and evaluate two algorithms for smooth and collision-free navigation for multiple independent differential-drive robots.We extend reciprocal collision avoidance algorithms based on velocity obstacles and on acceleration-velocity obstacles. We implement bothmethods on multiple iRobot Create differential-drive robots, and report on the quality and ability of the robots using the two algorithms to navigate to their goals in a smooth and collision-free manner.

Keywords

Collision Avoidance Wheel Speed Multiple Robot Acceleration Parameter Robot Motion Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 1207–1212 (2001)Google Scholar
  2. 2.
    Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity differential drive vehicles. Int. J. Robot. Res. 21(3), 199–217 (2002)CrossRefGoogle Scholar
  3. 3.
    Bekris, K.E., Tsianos, K.I., Kavraki, L.E.: A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 3784–3790 (2007)Google Scholar
  4. 4.
    van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Proc. Int. Symp. Robot. Res. (2009)Google Scholar
  5. 5.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1928–1935 (2008)Google Scholar
  6. 6.
    van den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: Proc. IEEE Int. Conf. Robot. Autom. (2011)Google Scholar
  7. 7.
    Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  8. 8.
    Fiorini, P., Botturi, D.: Introducing service robotics to the pharmaceutical industry. Intell. Serv. Robot. 1(4), 267–280 (2008)CrossRefGoogle Scholar
  9. 9.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar
  10. 10.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33 (1997)CrossRefGoogle Scholar
  11. 11.
    Jones, J.L., Mack, N.E., Nugent, D.M., Sandin, P.E.: Autonomous floor-cleaning robot. U.S. Pat. 6, 883, 201 (2005)Google Scholar
  12. 12.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  13. 13.
    Kant, K., Zucker, S.W.: Towards efficient trajectory planning: The path-velocity decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986)CrossRefGoogle Scholar
  14. 14.
    Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proc. IEEE ACM Int. Work. Augment. Real., pp. 85–94 (1999)Google Scholar
  15. 15.
    Kluge, B., Prassler, E.: Reflective navigation: Individual behaviors and group behaviors. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 4172–4177 (2004)Google Scholar
  16. 16.
    Latombe, J.C.: Robot Motion Planning. Springer Int. Ser. Eng. Comput. Sci., vol. 124. Springer (1991)Google Scholar
  17. 17.
    La Valle, S.M.: Planning Algorithms. Cambridge Univ. Pr. (2006)Google Scholar
  18. 18.
    Michael, N., Fink, J., Kumar, V.: Experimental testbed for large multirobot teams. IEEE Robot. Autom. Mag. 15(1), 53–61 (2008)CrossRefGoogle Scholar
  19. 19.
    Pallottino, L., Scordio, V.G., Bicchi, A., Frazzoli, E.: Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Trans. Robot. Autom. 23(6), 1170–1183 (2007)CrossRefGoogle Scholar
  20. 20.
    Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 2210–2215 (2005)Google Scholar
  21. 21.
    Philippsen, R., Siegwart, R.: Smooth and efficient obstacle avoidance for a tour guide robot. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 1, pp. 446–451 (2003)Google Scholar
  22. 22.
    Prassler, E., Scholz, J., Fiorini, P.: A robotic wheelchair for crowded public environments. IEEE Robot. Autom. Mag. 8(1), 38–45 (2001)CrossRefGoogle Scholar
  23. 23.
    Roh, S., Choi, H.: Strategy for navigation inside pipelines with differential-drive inpipe robot. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 3, pp. 2575–2580 (2002)Google Scholar
  24. 24.
    Snape, J., van den. Berg, J., Guy, S.J., Manocha, D.: Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 5917–5922 (2009)Google Scholar
  25. 25.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: Smooth and collision-free navigation for multiple robots under differential-drive constraints. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 4584–4589 (2010)Google Scholar
  26. 26.
    Welch, G., Bishop, G.: An introduction to the Kalman filter. Tech. Rep. 95-041, Univ. N. Carolina Chapel Hill (1995)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Jamie Snape
    • 1
  • Stephen J. Guy
    • 1
  • Jur van den Berg
    • 1
  • Dinesh Manocha
    • 1
  1. 1.University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations