Effects of Sensory Precision on Mobile Robot Localization and Mapping

  • John G. RogersIII
  • Alexander J. B. Trevor
  • Carlos Nieto-Granda
  • Alex Cunningham
  • Manohar Paluri
  • Nathan Michael
  • Frank Dellaert
  • Henrik I. Christensen
  • Vijay Kumar
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

This paper will explore the relationship between sensory accuracy and Simultaneous Localization and Mapping (SLAM) performance. As inexpensive robots are developed with commodity components, the relationship between performance level and accuracy will need to be determined. Experiments are presented in this paper which compare various aspects of sensor performance such as maximum range, noise, angular precision, and viewable angle. In addition, mapping results from three popular laser scanners (Hokuyo’s URG and UTM30, as well as SICK’s LMS291) are compared.

Keywords

Laser Scanner Structure From Motion Trajectory Error Mobile Robot Localization Sensory Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ARL, Army Research Lab Micro Autonomous Systems and Technology Collaborative Technology Alliance MAST CTA (2006), http://www.arl.army.mil/www/default.cfm?page=332
  2. 2.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bailey, T.: Constrained initialisation for bearing-only SLAM. In: IEEE International Conference on Robotics and Automation (2003)Google Scholar
  4. 4.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localisation and mapping (SLAM): Part II state of the art. Robotics and Automation Magazine (2006)Google Scholar
  5. 5.
    Berrabah, S.A., Baudoin, Y., Sahli, H.: SLAM for robotic assistance to fire-fighting services. World Congress on Intelligent Control and Automation (2010)Google Scholar
  6. 6.
    Burgard, W., Stachniss, C., Grisetti, G., Steder, B.: Trajectory-based comparison of SLAM algorithms. In: IEEE International Conference on Intelligent Robots and Systems (2009)Google Scholar
  7. 7.
    Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for mobile robots. In: IEEE International Conference on Robotics and Automation (1985)Google Scholar
  8. 8.
    Crowley, J.: World modeling and position estimation for a mobile robot using ultra-sonic ranging. In: IEEE International Conference on Robotics and Automation (1989)Google Scholar
  9. 9.
    Dellaert, F.: Square root SAM: Simultaneous localization and mapping via square root information smoothing. Robotics: Science and Systems (2005)Google Scholar
  10. 10.
    Dellaert, F., Kaess, M.: Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research (2006)Google Scholar
  11. 11.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): Part I the essential algorithms. Robotics and Automation Magazine (2006)Google Scholar
  12. 12.
    Folkesson, J., Christensen, H.: Graphical SLAM - a self-correcting map. In: IEEE International Conference on Robotics and Automation (2004)Google Scholar
  13. 13.
    Folkesson, J., Jensfelt, P., Christensen, H.I.: The M-Space feature representation for SLAM. IEEE Transactions on Robotics 23(5), 1024–1035 (2007)CrossRefGoogle Scholar
  14. 14.
    Jason, M., LaValle, S.M.: Localization with limited sensing. IEEE Transations on Robotics 23, 704–716 (2007)CrossRefGoogle Scholar
  15. 15.
    Kaess, M., Ranganathan, A., Dellaert, F.: Fast incremental square root information smoothing. In: International Joint Conference on Artificial Intelligence (2007)Google Scholar
  16. 16.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics (2008)Google Scholar
  17. 17.
    Müller, M., Surmann, H., Pervölz, K., May, S.: The accuracy of 6D SLAM using the AIS 3D laser scanner. In: International Conference on Multisensor Fusion and Integration for Intelligent Systems (2006)Google Scholar
  18. 18.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1929–1934 (2005)Google Scholar
  19. 19.
    O’Kane, J.M., LaValle, S.M.: Almost-sensorless localization. In: IEEE International Conference on Robotics and Automation, pp. 3764–3769 (2005)Google Scholar
  20. 20.
    Smith, R., Cheeseman, P.: On the representation and estimation of spatial uncertainty. International Journal of Robotics Research 5(4), 56–68 (1987)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • John G. RogersIII
    • 1
  • Alexander J. B. Trevor
    • 1
  • Carlos Nieto-Granda
    • 1
  • Alex Cunningham
    • 1
  • Manohar Paluri
    • 1
  • Nathan Michael
    • 2
  • Frank Dellaert
    • 1
  • Henrik I. Christensen
    • 1
  • Vijay Kumar
    • 2
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations