Advertisement

Interactive Perception of Articulated Objects

  • Dov Katz
  • Andreas Orthey
  • Oliver Brock
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

We present a skill for the perception of three-dimensional kinematic structures of rigid articulated bodies with revolute and prismatic joints. The ability to acquire such models autonomously is required for general manipulation in unstructured environments. Experiments on a mobile manipulation platform with real-world objects under varying lighting conditions demonstrate the robustness of the proposed method. This robustness is achieved by integrating perception and manipulation capabilities: the manipulator interacts with the environment to move an unknown object, thereby creating a perceptual signal that reveals the kinematic properties of the object. For good performance, the perceptual skill requires the presence of trackable visual features in the scene.

Keywords

Rigid Body Kinematic Model Revolute Joint Object Segmentation Rigid Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3777–3784 (2004)Google Scholar
  2. 2.
    Blake, A., Yuille, A. (eds.): Active Vision. MIT Press (1992)Google Scholar
  3. 3.
    Chiuso, A., Favaro, P., Jin, H., Soatto, S.: Structure from motion causally integrated over time. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 523–535 (2002)CrossRefGoogle Scholar
  4. 4.
    Delage, E., Lee, H., Ng, A.Y.: A dynamic bayesian network model for autonomous 3D reconstruction from a single indoor image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2418–2428. IEEE Computer Society, Washington, DC (2006)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  6. 6.
    Fitzpatrick, P.: First contact: an active vision approach to segmentation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (2003)Google Scholar
  7. 7.
    Forsyth, D.A., Ponce, J.: Computer Vision – A Modern Approach. Prentice Hall (2002)Google Scholar
  8. 8.
    Goh, A., Vidal, R.: Segmenting motions of different types by unsupervised manifold clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  10. 10.
    Katz, D., Brock, O.: Manipulating articulated objects with interactive perception. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, USA (2008)Google Scholar
  11. 11.
    Katz, D., Brock, O.: A factorization approach to manipulation in unstructured environments. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 285–300. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Katz, D., Brock, O.: Interactive segmentation of articulated objects in 3D (under review). In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (May 2011)Google Scholar
  13. 13.
    Katz, D., Pyuro, Y., Brock, O.: Learning to manipulate articulated objects in unstructured environments using a grounded relational representation. In: Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, pp. 254–261 (June 2008)Google Scholar
  14. 14.
    Kenney, J., Buckley, T., Brock, O.: Interactive segmentation for manipulation in unstructured environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, pp. 1343–1348. IEEE Press (2009)Google Scholar
  15. 15.
    Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maki, A., Watanabe, M., Wiles, C.: Geotensity: Combining motion and lighting for 3D surface reconstruction. International Journal of Computer Vision 48(2), 75–90 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Malik, J., Rosenholtz, R.: Computing local surface orientation and shape from texture for curved surfaces (1997)Google Scholar
  18. 18.
    Matula, D.W.: Determining edge connectivity in O(mn). In: Proceedings of the 28th Symp. on Foundations of Computer Science, pp. 249–251 (1987)Google Scholar
  19. 19.
    Montiel, J., Civera, J., Davison, A.: Unified Inverse Depth Parametrization for Monocular SLAM. In: Proceedings of Robotics: Science and Systems, RSS (August 2006); This is a prestigious new single-track international robotics conference with online-only proceedingsGoogle Scholar
  20. 20.
    Nagai, T., Naruse, T., Ikehara, M., Kurematsu, A.: HMM-based surface reconstruction from single images. In: International Conference on Image Processing, vol. 2, pp. II-561–II-564 (2002)Google Scholar
  21. 21.
    Ross, D.A., Tarlow, D., Zemel, R.S.: Unsupervised Learning of Skeletons from Motion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 560–573. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision 76(1), 53–69 (2008)CrossRefGoogle Scholar
  23. 23.
    Sturm, J., Konolige, K., Stachniss, C., Burgard, W.: Vision-based detection for learning articulation models of cabinet doors and drawers in household environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska (2010)Google Scholar
  24. 24.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)Google Scholar
  25. 25.
    Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories of articulated objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Dov Katz
    • 1
  • Andreas Orthey
    • 1
  • Oliver Brock
    • 1
  1. 1.Robotics and Biology Laboratory, School of Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations