Advertisement

Manipulation Capabilities with Simple Hands

  • Alberto Rodriguez
  • Matthew T. Mason
  • Siddhartha S. Srinivasa
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

A simple hand is a robotic gripper that trades off generality in function for practicality in design and control. The long-term goal of our work is to explore that tradeoff and demonstrate broad manipulation capabilities with simple hands. This paper describes two prototype simple hands. Both hands have thin cylindrical fingers arranged symmetrically around a low friction circular palm. The fingers are compliantly coupled to a single actuator. Our experiments with both hands in a bin-picking scenario demonstrate that we can achieve robust grasp classification and in-hand localization using simple statistical techniques. We further show how the classification accuracy increases as the grasp proceeds by exploiting information obtained online. We finally evaluate the relative importance of observing the full state of the hand rather than just observing the state of the actuators.

Keywords

Robotic Hand Robot Operating System Grasp Stability Grasp Motion Simple Hand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barret Technologies: The Barret hand (2001), http://www.barrett.com/robot/products-hand.htm
  2. 2.
    Bicchi, A., Salisbury, J.K., Brock, D.L.: Contact Sensing from Force Measurements. The International Journal of Robotics Research 12(3), 249 (1993)CrossRefGoogle Scholar
  3. 3.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Carrozza, M.C., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., Cutkosky, M.R., Dario, P.: The SPRING Hand: Development of a self-Adaptive Prosthesis for Restoring Natural Grasping. Autonomous Robots 16(2), 125–141 (2004)CrossRefGoogle Scholar
  5. 5.
    Ciocarlie, M., Allen, P.: Data-driven optimization for underactuated robotic hands. In: International Conference on Robotics and Automation, pp. 1292–1299. IEEE (2010)Google Scholar
  6. 6.
    Cleveland, W.S., Devlin, S.J.: Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association 83(403), 596–610 (1988)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    Dollar, A.M., Howe, R.D.: Joint coupling design of underactuated grippers. In: 30th Annual Mechanisms and Robotics Conference, pp. 903–911. Harvard University (2006)Google Scholar
  9. 9.
    Dollar, A.M., Howe, R.D.: The Highly Adaptive SDM Hand: Design and Performance Evaluation. The International Journal of Robotics Research 29(5), 585–597 (2010)CrossRefGoogle Scholar
  10. 10.
    Dollar, A.M., Jentoft, L.P., Gao, J.H., Howe, R.D.: Contact sensing and grasping performance of compliant hands. Autonomous Robots 28(1), 65–75 (2010)CrossRefGoogle Scholar
  11. 11.
    Jacobsen, S., Wood, J., Knutti, D., Biggers, K.: The Utah/M.I.T. Dextrous Hand: Work in Progress. The International Journal of Robotics Research 3(4), 21–50 (1984)CrossRefGoogle Scholar
  12. 12.
    Kemp, C., Edsinger, A., Torres-Jara, E.: Challenges for Robot Manipulation in Human Environments (Grand Challenges of Robotics). IEEE Robotics & Automation Magazine 14(1), 20–29 (2007)CrossRefGoogle Scholar
  13. 13.
    Laliberte, T., Birglen, L., Gosselin, C.: Underactuation in robotic grasping hands. Machine Intelligence & Robotic Control 4(3), 1–11 (2002)Google Scholar
  14. 14.
    Mason, M.T., Srinivasa, S.S., Vazquez, A.S., Rodriguez, A.: Generality and Simple Hands. Technical Report CMU-RI-TR-10-40, Robotics Institute, Carnegie Mellon University (2010)Google Scholar
  15. 15.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an Open-Source Robot Operating System. In: International Conference on Robotics and Automation. IEEE (2009)Google Scholar
  16. 16.
    Robotiq: The Adaptive Gripper (2010), http://robotiq.com/robot-hand/
  17. 17.
    Smith, L.: A tutorial on principal components analysis (2002)Google Scholar
  18. 18.
    Theobald, D.A., Hong, W.J., Madhani, A., Hoffman, B., Niemeyer, G., Cadapan, L., Slotine, J.-J., Salisbury, K.: Autonomous Rock Acquisition. In: AIAA Forum on Advanced Developments in Space Robotics (1996)Google Scholar
  19. 19.
    Ulrich, N.T.: Grasping with mechanical intelligence (1989)Google Scholar
  20. 20.
    Xu, Z., Deyle, T., Kemp, C.C.: 1000 Trials: An Empirically Validated End Effector that Robustly Grasps Objects from the Floor. In: International Conference on Robotics and Automation, pp. 2160–2167. IEEE (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto Rodriguez
    • 1
  • Matthew T. Mason
    • 1
  • Siddhartha S. Srinivasa
    • 2
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Intel ResearchPittsburghUSA

Personalised recommendations