Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

Complex robots with multiple arms and sensors need good calibration to perform precise tasks in unstructured environments. The sensors must be calibrated both to the manipulators and to each other, since fused sensor data is often needed. We propose an extendable framework that combines measurements from the robot’s various sensors (proprioceptive and external) to calibrate the robot’s joint offsets and external sensor locations. Our approach is unique in that it accounts for sensor measurement uncertainties, thereby allowing sensors with very different error characteristics to be used side by side in the calibration. The framework is general enough to handle complex robots with kinematic components, including external sensors on kinematic chains. We validate the framework by implementing it on the Willow Garage PR2 robot, providing a significant improvement in the robot’s calibration.

Keywords

Joint Angle Kinematic Chain Error Characteristic Bundle Adjustment Dual Quaternion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, C.H., Atkeson, C.G., Hollerbach, J.M.: Model-based control of a robot manipulator. MIT Press, Cambridge (1988)Google Scholar
  2. 2.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987), doi: http://dx.doi.org/10.1109/TPAMI.1987.4767965 CrossRefGoogle Scholar
  3. 3.
    Bowman, J.: Camera calibration, http://www.ros.org/wiki/camera_calibration
  4. 4.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  5. 5.
    Chen, I.M., Yang, G., Tan, C.T., Yeo, S.H.: Local poe model for robot kinematic calibration. Mechanism and Machine Theory 36(11-12), 1215–1239 (2001), doi:10.1016/S0094-114X(01)00048-9MATHCrossRefGoogle Scholar
  6. 6.
    Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal of Robotics Research 18, 286–298 (1998)Google Scholar
  7. 7.
    Hollerbach, J.M., Wampler, C.W.: The calibration index and taxonomy for robot kinematic calibration methods. Int. J. Rob. Res. 15(6), 573–591 (1996), doi: http://dx.doi.org/10.1177/027836499601500604 CrossRefGoogle Scholar
  8. 8.
    Horaud, R., Dornaika, F.: Hand-eye calibration. Int. J. Rob. Res. 14(3), 195–210 (1995), doi: http://dx.doi.org/10.1177/027836499501400301 CrossRefGoogle Scholar
  9. 9.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/
  10. 10.
    Le, Q., Ng, A.: Joint calibration of multiple sensors. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3651–3658 (2009)Google Scholar
  11. 11.
    Lorsakul, A., Suthakorn, J., Sinthanayothin, C.: Point-cloud-to-point-cloud technique on tool calibration for dental implant surgical path tracking, p. 691829. SPIE (2008), doi:10.1117/12.772257Google Scholar
  12. 12.
    Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein, E., Muja, M., Eruhimov, V., Foote, T., Hsu, J., Rusu, R.B., Marthi, B., Bradski, G., Konolige, K., Gerkey, B., Berger, E.: Autonomous door opening and plugging in with a personal robot. In: International Conference on Robotics and Automation (2010)Google Scholar
  13. 13.
    Sturm, J., Pradeep, V., Stachniss, C., Plagemann, C., Konolige, K., Burgard, W.: Learning kinematic models for articulated objects. In: Proc. of the Int. Conf.  on Artificial Intelligence, IJCAI (2009)Google Scholar
  14. 14.
    Svoboda, T., Martinec, D., Pajdla, T.: A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14(4), 407–422 (2005)CrossRefGoogle Scholar
  15. 15.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Unnikrishnan, R., Hebert, M.: Fast extrinsic calibration of a laser rangefinder to a camera. Tech. Rep. CMU-RI-TR-05-09, Robotics Institute, Pittsburgh, PA (2005)Google Scholar
  17. 17.
    Wampler, C.W., Hollerbach, J.M., Arai, T.: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms. IEEE Trans. Robotics and Automation 11(5), 710–724 (1995)CrossRefGoogle Scholar
  18. 18.
    Wyrobek, K., Berger, E., der Loos, H.V., Salisbury, K.: Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In: Proc. International Conference on Robotics and Automation, ICRA (2008)Google Scholar
  19. 19.
    Zhang, Q.: Extrinsic calibration of a camera and laser range finder. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2301–2306 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Willow Garage Inc.Menlo ParkUSA

Personalised recommendations