Skip to main content

A General Framework for Temporal Calibration of Multiple Proprioceptive and Exteroceptive Sensors

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

Fusion of data from multiple sensors can enable robust navigation in varied environments.However, for optimal performance, the sensors must be calibrated relative to one another. Full sensor-to-sensor calibration is a spatiotemporal problem: we require an accurate estimate of the relative timing of measurements for each pair of sensors, in addition to the 6-DOF sensor-to-sensor transform. In this paper, we examine the problem of determining the time delays between multiple proprioceptive and exteroceptive sensor data streams. The primary difficultly is that the correspondences between measurements from different sensors are unknown, and hence the delays cannot be computed directly. We instead formulate temporal calibration as a registration task. Our algorithm operates by aligning curves in a three-dimensional orientation space, and, as such, can be considered as a variant of Iterative Closest Point (ICP). We present results from simulation studies and from experiments with a PR2 robot, which demonstrate accurate calibration of the time delays between measurements from multiple, heterogeneous sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaramuzza, D., Harati, A., Siegwart, R.: Extrinsic Self Calibration of a Camera and a 3D Laser Range Finder from Natural Scenes. In: Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS 2007), San Diego, USA, pp. 4164–4169 (October/November 2007)

    Google Scholar 

  2. Mirzaei, F.M., Roumeliotis, S.I.: A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation. IEEE Trans. Robotics 24(5), 1143–1156 (2008)

    Article  Google Scholar 

  3. Kelly, J., Sukhatme, G.S.: Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-Calibration. Int’l J. Robotics Research 30(1), 56–79 (2011)

    Article  Google Scholar 

  4. Knapp, C.N., Carter, G.C.: The Generalized Correlation Method for Estimation of Time Delay. IEEE Trans. Acoustics, Speech, and Signal Processing ASSP–24(4), 320–327 (1976)

    Article  Google Scholar 

  5. Chan, Y.T., Riley, J.M.F., Plant, J.B.: A Parameter Estimation Approach to Time-Delay Estimation and Signal Detection. IEEE Trans. Acoustics, Speech, and Signal Processing ASSP–24(1), 8–16 (1980)

    Article  Google Scholar 

  6. Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple Range Images. In: Proc. IEEE Int’l Conf. Robotics and Automation (ICRA 1991), Sacramento, USA, vol. 3, pp. 2724–2729 (April 1991)

    Google Scholar 

  7. Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  8. Thomopoulos, S.C.A., Zhang, L.: Decentralized Filtering with Random Sampling and Delay. Information Sciences 81(1-2), 117–131 (1994)

    Article  MATH  Google Scholar 

  9. Larsen, T.D., Andersen, N.A., Ravn, O., Poulsen, N.K.: Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter. In: Proc. IEEE Conf. Decision & Control (CDC 1998), Tampa, USA, vol. 4, pp. 3972–3977 (December 1998)

    Google Scholar 

  10. Choi, M., Choi, J., Park, J., Chung, W.K.: State Estimation with Delayed Measurements Considering Uncertainty of Time Delay. In: Proc. IEEE Int’l Conf. Robotics and Automation (ICRA 2009), Kobe, Japan, pp. 3987–3992 (May 2009)

    Google Scholar 

  11. Ferreira, A.R., Fernandes, J.M.: A Survey on Time Delay System Estimation. In: Proc. European Control Conf. (ECC 1997), Brussels, Belgium (July 1997)

    Google Scholar 

  12. Julier, S.J., Uhlmann, J.K.: Fusion of Time Delayed Measurements with Uncertain Time Delays. In: Proc. American Control Conf (ACC 2005), Portland, USA, vol. 6, pp. 4028–4033 (June 2005)

    Google Scholar 

  13. Li, Q., Rus, D.: Global Clock Synchronization in Sensor Networks. IEEE Trans. Computers 55(2), 214–226 (2006)

    Article  Google Scholar 

  14. Tungadi, F., Kleeman, L.: Time Synchronisation and Calibration of Odometry and Range Sensors for High-Speed Mobile Robot Mapping. In: Kim, J., Mahony, R. (eds.) Proc. Australasian Conf. Robotics and Automation (ACRA 2008), Canberra, Australia (December 2008)

    Google Scholar 

  15. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton (2002)

    Google Scholar 

  16. Chatfield, A.B.: Fundamentals of High Accuracy Inertial Navigation. In: Zarchan, P. (ed.) Progress in Astronautics and Aeronautics, vol. 174, American Institute of Aeronautics and Astronautics, Cambridge (1997)

    Google Scholar 

  17. Crassidis, J.L., Markely, F.L.: Attitude Estimation Using Modified Rodrigues Parameters. In: Proc. Flight Mechanics and Estimation Theory Symp., pp. 71–83. NASA Goddard Space Flight Center, Greenbelt (1996)

    Google Scholar 

  18. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. In: Schetz, J.A. (ed.) AIAA Education Series, 2nd edn., American Institute of Aeronautics and Astronautics, Reston (2009)

    Google Scholar 

  19. Ma, Y., Soatto, S., Košecká, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. In: Interdisciplinary Applied Mathematics, 1st edn., vol. 26. Springer, New York (2004)

    Google Scholar 

  20. Ansar, A., Daniilidis, K.: Linear Pose Estimation from Points or Lines. IEEE Trans. Pattern Analysis and Machine Intelligence 25(5), 578–589 (2003)

    Article  Google Scholar 

  21. Huynh, D.Q.: Metrics for 3D Rotations: Comparison and Analysis. J. Mathematical Imaging and Vision 35(2), 155–164 (2009)

    Article  MathSciNet  Google Scholar 

  22. Gans, P.: Data Fitting in the Chemical Sciences: By the Method of Least Squares. Wiley, Chichester (1992)

    Google Scholar 

  23. Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Proc. 3rd Int’l Conf. 3-D Digital Imaging and Modeling, Québec City, Canada, pp. 145–152 (May/June 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, J., Sukhatme, G.S. (2014). A General Framework for Temporal Calibration of Multiple Proprioceptive and Exteroceptive Sensors. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics