Controlling Closed-Chain Robots with Compliant SMA Actuators: Algorithms and Experiments

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

In this paper we present algorithms, devices, simulations, and experiments concerning a robot that locomotes using novel compliant, sheet-based, shape memory alloy actuators. Specifically, we describe the theory and practical implementation of a provably correct algorithm capable of generating locomotion gaits in closed-loop linkages. We implement this algorithm in a distributed fashion on the HexRoller, a closed-chain robot with six low-stiffness actuators. We describe these actuators in detail and characterize their performance along with that of the robot.

Keywords

Shape Memory Alloy Shape Memory Alloy Wire Shape Memory Alloy Actuator Compliant Joint Annealed Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nordic semiconductor, inc. (2010), http://www.nordicsemi.com/
  2. 2.
    Open dynamics engine (2010), http://www.ode.org/
  3. 3.
    Cho, K.-J., Asada, H.: Multi-axis sma actuator array for driving anthropomorphic robot hand. In: ICRA, pp. 1356–1361 (2005)Google Scholar
  4. 4.
    Cho, K.-J., Hawkes, E., Quinn, C., Wood, R.J.: Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: ICRA, pp. 706–711 (2008)Google Scholar
  5. 5.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley (1989)Google Scholar
  6. 6.
    Esfahani, E.T., Elahinia, M.H.: Stable walking pattern for an sma-actuated biped. Mechatronics 12(5), 534–541 (2007)Google Scholar
  7. 7.
    Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)CrossRefGoogle Scholar
  8. 8.
    Kim, S., Hawkes, E., Cho, K.-J., Joldaz, M., Foley, J., Wood, R.: Micro artificial muscle fiber using niti spring for soft robotics. In: IROS, pp. 2228–2234 (2009)Google Scholar
  9. 9.
    Matsuda, T., Murata, S.: Stiffness distribution control—locomotion of closed link robot with mechanical softness. In: ICRA, pp. 1491–1498 (2006)Google Scholar
  10. 10.
    Mellinger, D., Kumar, V., Yim, M.: Control of locomotion with shape-changing wheels. In: ICRA, pp. 1750–1755 (2009)Google Scholar
  11. 11.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IROS, pp. 399–406 (1995)Google Scholar
  12. 12.
    Sastra, J., Chitta, S., Yim, M.: Dynamic rolling for a modular loop robot. International Journal of Robotics Research (IJRR) 28(6), 758–773 (2009)CrossRefGoogle Scholar
  13. 13.
    Shen, W.-M., Krivokon, M., Chu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion via superbot reconfigurable robots. Autnomous Robots 20(2), 126–177 (2006)Google Scholar
  14. 14.
    Sugiyama, Y., Shitsu, A., Yamanaka, M., Hirai, S.: Circular/spherical robots for crawling and jumping. In: ICRA, pp. 3595–3600 (2005)Google Scholar
  15. 15.
    Torres-Jara, E., Gilpin, K., Karges, J., Wood, R.J., Rus, D.: Composable flexible small actuators built from thin shape memory alloy sheets. Robotics and Automation Magazine (in press)Google Scholar
  16. 16.
    Torres-Jara, E., Rus, D.: Flexible actuator based on shape memory alloy sheet (us patent 61/248,83) (2009)Google Scholar
  17. 17.
    Yim, M.: New locomotion gaits. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2508–2514 (1994)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Distributed Robotics LabMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations