Computational Methods for Name Normalization Using Hypocoristic Personal Name Variants

  • Patricia Driscoll
Part of the Theory and Applications of Natural Language Processing book series (NLP)


A growing body of research addresses name normalization as part of coreference and entity resolution systems, but the problem of hypocoristics has not been systematically addressed as a component to such systems. In many languages, these name variants are governed by morphological and morphophonological constraints, providing a dataset rich in features that may be used to train and run matching systems. This paper gives a full treatment to the phenomenon of hypocoristics and presents a supervised learning method that takes advantage of their properties to untangle the relationships between hypocoristic name variants and corresponding full form names.


Machine Translation Full Form Entity Resolution Levenshtein Distance Markedness Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aceto, M.: Ethnic personal names and multiple identities in anglophone caribbean speech communities in latin america. Lang. Soc. 31, 577–608 (2002)Google Scholar
  2. 2.
    Alexopoulou, D., Andreopoulos, B., Dietze, H., Doms, A., Gandon, F., Hakenberg, J., Khelif, K., Schroeder, M., Wāchter, T.: Biomedical Word Sense Disambiguation with Ontologies and Metadata: Automation Meets Accuracy. BMC Bioinformatics, London, UK (2004)Google Scholar
  3. 3.
    Artiles, J., Gonzales, J., Sekine, S.: The semeval-2007 weps evaluation: establishing a benchmark for the web people search. In: SemEval. Association for Computational Linguistics, Stroudsburg (2007)Google Scholar
  4. 4.
    Artiles, J., Gonzalo, J., Sekine, S.: Weps 2 evaluation campaign: overview of the web people search clustering task. In: WWW, Madrid (2009)Google Scholar
  5. 5.
    Artiles, J., Sekine, S., Gonzalo, J.: Web people search: results of the first evaluation and the plan for the second. In: WWW, Beijing. ACM, New York (2008)Google Scholar
  6. 6.
    Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vector space model. In: Boitet, C., Whitelock. P. (eds.) Proceedings of the Thirty-Sixth Annual Meeting of the Association for Computational Linguistics and Seventeenth International Conference on Computational Linguistics, pp. 79–85. Morgan Kaufmann, San Francisco (1998).
  7. 7.
    Bethin, C.: Metrical quantity in czech: evidence from hypocoristics. In: Formal Approaches to Slavic Linguistics 11. Michigan Slavic, Ann Arbor, MI (2003)Google Scholar
  8. 8.
    Brin, S.: Extracting patterns and relations from the world wide web. In: WebDB Workshop at 6th International Conference on Extending Database Technology, EDBT’98, Valencia, pp. 172–183 (1998).
  9. 9.
    Davis, S., Zawaydeh, B.: Arabic hypocoristics and the status of the consonant root. Linguist. Inq. 32(3), 512–520 (2001)Google Scholar
  10. 10.
    Driscoll, P., Yarowsky, D.: Disambiguation of standardized personal name variants. In: MMIES, Borouets, Bulgaria (2007)Google Scholar
  11. 11.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soderland, S., Weld, D., Yates, A.: Web-scale information extraction in knowitall. In: WWW, Manhattan ACM, New York (2004)Google Scholar
  12. 12.
    Grūter, T.: Hypocoristics: The case of u-formation in bernese swiss german. J. Ger. Linguist. 15(1), 27-63 (2003)Google Scholar
  13. 13.
    Halicki, E.: Accorciamenti, hypocoristics, and foot structure: Against the ternary foot in italian. Indiana University Linguistics Club Working Papers Online, Bloomington, IN (2007)Google Scholar
  14. 14.
    Higgins, C., McGrath, E., Moretto, L.: Mturk crowdsourcing: A viable method for rapid discovery of arabic nicknames? In: Workshop on Creating Speech and Language Data with Amazons Mechanical Turk, Los Angeles, CA (2010)Google Scholar
  15. 15.
    Hirschman, L., Colosimo, M., Morgan, A., Yeh, A.: Overview of biocreative task 1b: normalized gene lists. BMC Bioinf. 6(Suppl 1), S11 (2005)Google Scholar
  16. 16.
    Kazi, Z., Ravin, Y.: Who’s who? identifying concepts and entities across multiple documents. In: International Conference on System Sciences. IEEE Computer Society, Washington, DC (2000)Google Scholar
  17. 17.
    Knight, K., Graehl, J.: Machine transliteration. Comput. Linguist. 24(4), 599–612 (1998)Google Scholar
  18. 18.
    Krstev, C., Dusko, V., Maurel, D., Tran, M.: Multilingual ontology of proper names. In: Language and Technology Conference, Poznan, 21–23 April. Wydawnictwo Poznanskie Sp. z o.o, Poznan (2005)Google Scholar
  19. 19.
    Lipski, J.: Spanish hypocoristics: towards a unified prosodic analysis. Hispanic Linguist. 6/7, 387–434 (1995)Google Scholar
  20. 20.
    Mann, G.S.: Building a proper noun ontology for question answering. In: Proceedings of SemaNet02: Building and Using Semantic Networks, pp. 16–22. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  21. 21.
    Mann, G.S., Yarowsky, D.: Multipath translation lexicon induction via bridge languages. In: NAACL. Association for Computational Linguistics, Stroudsburg (2001)Google Scholar
  22. 22.
    Mann, G.S., Yarowsky, D.: Unsupervised personal name disambiguation. In: Proceedings of the Conference on Natural Language Learning, pp. 33–40. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  23. 23.
    Navarro, G., Baeze-Yates, R., Arcoverde, J.: Matchsimile: a flexible approximate matching tool for searching proper names. JASIST 54(1), 3–15 (2003)Google Scholar
  24. 24.
    Nelson, N.: Mixed anchoring in french hypocoristic formation. In: RuLing Papers 1, Seattle, WA (1998)Google Scholar
  25. 25.
    Newman, P., Ahmad, M.: Hypocoristics names in hausa. Anthropol. Linguist. 34(1/4), 159–172 (1992)Google Scholar
  26. 26.
    Notopoulos, J.: The name of plato. Class. Philol. 34(2), 135–45 (1939)Google Scholar
  27. 27.
    Obeng, S.: From morphophonology to sociolinguistics: the case of akan hypocoristic day-names. Multilingua 16(1), 39–56 (1997)Google Scholar
  28. 28.
    Palmer, D., Ostendorf, M.: Improving out-of-vocabulary name resolution. Comput. Speech Lang. 19(1), 107–128 (2005)Google Scholar
  29. 29.
    Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generative Grammar. Rutgers University, New Brunswick, NJ (1993)Google Scholar
  30. 30.
    Ravin, Y., Kazi, Z.: Is hillary rodham clinton the president? disambiguating names across documents. In: Proceedings of the ACL ’99 Workshop on Coreference and its Applications, College Park (1999)Google Scholar
  31. 31.
    Ristad, E., Yianilos, P.: Learning string edit distance. IEEE Trans. PAMI 20(5), 522–532 (1998)Google Scholar
  32. 32.
    Sheremetyeva, S., Cowie, J., Nirenburg, S., Zajac, R.: Multilingual onomasticon as a multipurpose nlp resource. In: LREC, Grenada, Spain (1998)Google Scholar
  33. 33.
    Sherif, T., Kondrak, G.: Substring-based transliteration. In: ACL, Prague (2007)Google Scholar
  34. 34.
    Simpson, J.: Hypocoristics of place-names in australian english. In: Varieties of English: Australian English, Benjamins (2001)Google Scholar
  35. 35.
    Thornton, A.: On some phenomena of prosodic morphology in italian: Accorciamenti, hypocoristics and prosodic delimitation. Probus 8(1), 81–112 (1996)Google Scholar
  36. 36.
    Virga, P., Khudanpur, S.: Transliteration of proper names in cross-lingual information retrieval. In: ACL. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  37. 37.
    Wacholder, N., Ravin, Y., Choi, M.: Disambiguation of proper names in text. In: Proceedings of Fifth Conference on Applied Natural Language Processing, pp. 202–208. Association for Computational Linguistics, Stroudsburg (1997).
  38. 38.
    Wang, X., Matthews, M.: Species disambiguation for biomedical term identification. In: BioNLP. Association for Computational Linguistics, Stroudsburg (2008)Google Scholar
  39. 39.
    Wicentowski, R.: Multilingual noise-robust supervised morphological analysis using the wordframe model. In: ACL SIGPHON. Association for Computational Linguistics, Stroudsburg (2004)Google Scholar
  40. 40.
    Yarowsky, D., Wicentowski, R.: Minimally supervised morphological analysis by multimodal alignment. In: ACL. Association for Computational Linguistics, Stroudsburg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations