Information Extraction: Past, Present and Future

Chapter

Abstract

In this chapter we present a brief overview of Information Extraction, which is an area of natural language processing that deals with finding factual information in free text. In formal terms, facts are structured objects, such as database records. Such a record may capture a real-world entity with its attributes mentioned in text, or a real-world event, occurrence, or state, with its arguments or actors: who did what to whom, where and when. Information is typically sought in a particular target setting, e.g., corporate mergers and acquisitions. Searching for specific, targeted factual information constitutes a large proportion of all searching activity on the part of information consumers. There has been a sustained interest in Information Extraction for over two decades, due to its conceptual simplicity on one hand, and to its potential utility on the other. Although the targeted nature of this task makes it more tractable than some of the more open-ended tasks in NLP, it is replete with challenges as the information landscape evolves, which also makes it an exciting research subject.

References

  1. 1.
    Andersen, P., Hayes, P., Huettner, A., Schmandt, L., Nirenburg, I., Weinstein, S.: Automatic extraction of facts from press releases to generate news stories. In: Proceedings of the 3rd Conference on Applied Natural Language Processing, ANLC ’92, Trento, pp. 170–177. Association for Computational Linguistics, Stroudsburg (1992)Google Scholar
  2. 2.
    Aone, C., Halverson, L., Hampton, T., Ramos-Santacruz, M., Hampton, T.: SRA: description of the IE2 system used for MUC-7 In: Proceedings of MUC-7. Morgan Kaufmann, Columbia (1999)Google Scholar
  3. 3.
    Aone, C., Ramos-Santacruz, M.: REES: a large-scale relation and event extraction system. In: Proceedings of the 6th Conference on Applied Natural Language Processing, ANLP 2000, Seattle, pp. 76–83. Association for Computational Linguistics, Stroudsburg (2000)Google Scholar
  4. 4.
    Appelt, D.: Introduction to information extraction. AI Commun.12, 161–172 (1999)Google Scholar
  5. 5.
    Artiles, J., Borthwick, A., Gonzalo, J., Sekine, S., Amigï£, E.: WePS-3 evaluation campaign: overview of the web people search clustering and attribute extraction tasks. In: Braschler, M., Harman, D., Pianta, E. (eds.) CLEF (Notebook Papers/LABs/Workshops), Padua (2010)Google Scholar
  6. 6.
    Banko, M., Cafarella, M., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: Proceedings of the 20th International Joint Conference on Artifical intelligence, Hyderabad, pp. 2670–2676. Morgan Kaufmann, San Francisco (2007)Google Scholar
  7. 7.
    Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation extraction. In: Proceedings of ACL-08: HLT, Columbus, pp. 28–36. Association for Computational Linguistics, Columbus (2008)Google Scholar
  8. 8.
    Benson, E., Haghighi, A., Barzilay, R.: Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies – Vol. 1, pp. 389–398. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  9. 9.
    Bikel, D., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning name-finder. In: Proceedings of the 5th Applied Natural Language Processing Conference, Washington. Association for Computational Linguistics, Washington, DC (1997)Google Scholar
  10. 10.
    Califf, M.E., Greenwood, M.A., Stevenson, M., Yangarber, R. (eds.): In: Proceedings of the Workshop on Information Extraction Beyond The Document. COLING/ACL, Sydney (2006)Google Scholar
  11. 11.
    Charniak, E.: Statistical Language Learning. MIT, Cambridge (1993)Google Scholar
  12. 12.
    Chen, Z., Ji, H.: Can one language bootstrap the other: a case study on event extraction. In: Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing, SemiSupLearn ’09, Boulder, pp. 66–74. Association for Computational Linguistics, Stroudsburg (2009)Google Scholar
  13. 13.
    Collins, M., Singer, Y.: Unsupervised models for named entity classification. In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. University of Maryland, College Park (1999)Google Scholar
  14. 14.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, Philadelphia (2002)Google Scholar
  15. 15.
    Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., Weischedel, R.: Automatic content extraction (ACE) program – task definitions and performance measures. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004) (2004)Google Scholar
  16. 16.
    Downey, D., Etzioni, O., Soderland, S.: A probabilistic model of redundancy in information extraction. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, Edinburgh, pp. 1034–1041. Morgan Kaufmann, San Francisco (2005)Google Scholar
  17. 17.
    Drożdżyński, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow processing with unification and typed feature structures – foundations and applications. Künstliche Intell. 1/04, 17–23 (2004)Google Scholar
  18. 18.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D., Alexander, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005)Google Scholar
  19. 19.
    Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam: Open information extraction: the second generation. In: Proceedings of IJCAI 2011, Barcelona, pp. 3–10 (2011)Google Scholar
  20. 20.
    Fader, A., Soderland, S., Etzioni, O.: Extracting sequences from the web. In: Proceedings of the ACL 2010 Conference Short Papers, Uppsala, pp. 286–290. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  21. 21.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, Michigan, pp. 363–370. Association for Computational Linguistics, Stroudsburg (2005)Google Scholar
  22. 22.
    Gao, J., Wu, A., Li, M., ning Huang, C.: Chinese word segmentation and named entity recognition: a pragmatic approach. Comput. Linguist. 31, 574 (2005)Google Scholar
  23. 23.
    Grishman, R., Sundheim, B.: Message understanding conference – 6: a brief history. In: Proceedings of the 16th International Conference on Computational Linguistics (COLING), Kopenhagen, pp. 466–471. The Association for Computational Linguistics, Stroudsburg (1996)Google Scholar
  24. 24.
    Hobbs, J.R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., Tyson, M.: FASTUS: A cascaded finite-state transducer for extracting information from natural-language text. In: Roche, E., Schabes, Y. (eds.) Finite State Language Processing. MIT, Cambridge (1997)Google Scholar
  25. 25.
    Humphreys, K., Gaizauskas, R., Huyck, C., Mitchell, B., Cunningham, H., Wilks, Y.: University of sheffield: description of the LaSIE-II system and used for MUC-7. In: Proceedings of MUC-7, Virginia. SAIC (1998)Google Scholar
  26. 26.
    Huttunen, S., Yangarber, R., Grishman, R.: Complexity of event structure in information extraction. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002). Taipei (2002)Google Scholar
  27. 27.
    Iida, R., Poesio, M.: A cross-lingual ILP solution to zero anaphora resolution. In: The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, The Association for Computer Linguistics, Portland, Oregon, 19–24 June 2011, pp. 804–813 (2011)Google Scholar
  28. 28.
    Jacobs, P., Rau, L.: SCISOR: extracting information from on-line news. Commun. ACM 33, 88–97 (1990)Google Scholar
  29. 29.
    Ji, H.: Challenges from information extraction to information fusion. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING ’10, pp. 507–515. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  30. 30.
    Ji, H., Grishman, R.: Refining event extraction through cross-document inference. In: Proceedings of ACL-08: HLT, pp. 254–262. Association for Computational Linguistics, Columbus (2008)Google Scholar
  31. 31.
    Jones, R., Ghani, R., Mitchell, T., Riloff, E.: Active learning for information extraction with multiple view feature sets. ECML-03 Workshop on Adaptive Text Extraction and Mining, Cavtat-Dubrovnik (2003)Google Scholar
  32. 32.
    Kaiser, K., Miksch, S.: Information extraction – a survey. Tech. Rep. Asgaard-TR-2005-6, Vienna University of Technology, Institute of Software Technology and Interactive Systems, Vienna (2005)Google Scholar
  33. 33.
    Lee, A., Passantino, M., Ji, H., Qi, G., Huang, T.S.: Enhancing multi-lingual information extraction via cross-media inference and fusion. In: COLING (Posters), Beijing, pp. 630–638 (2010)Google Scholar
  34. 34.
    Lehnert, W., Cardie, C., Fisher, D., McCarthy, J., Riloff, E., Soderland, S.: University of Massachusetts: MUC-4 test results and analysis. In: Proceedings of the 4th Message Understanding Conference. Morgan Kaufmann, McLean (1992)Google Scholar
  35. 35.
    Lehnert, W., Cardie, C., Fisher, D., Riloff, E., Williams, R.: University of Massachusetts: Description of the CIRCUS system as used for MUC-3. In: Proceedings of the 3rd Message Understanding Conference. Morgan Kaufmann, San Diego (1991)Google Scholar
  36. 36.
    Liao, S., Grishman, R.: Using document level cross-event inference to improve event extraction. In: Proceedings of ACL 2010, Uppsala, pp. 789–797. ACL (2010)Google Scholar
  37. 37.
    Liu, X., Zhang, S., Wei, F., Zhou, M.: Recognizing named entities in tweets. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Human Language Technologies, Vol. 1, pp. 359–367. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  38. 38.
    Llytinen, S., Gershman., A.: ATRANS: automatic processing of money transfer messages. In: Proceedings of the 5th National Conference of the American Association for Artificial Intelligence. IEEE Computer Society Press (1986)Google Scholar
  39. 39.
    Locke, B., Martin, J.: Named entity recognition: adapting to microblogging. Senior Thesis, University of Colorado, Colorado (2009)Google Scholar
  40. 40.
    Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for information extraction. In: Proceedings of DARPA Broadcast News Workshop, Herndon (1999)Google Scholar
  41. 41.
    Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT, Cambridge, MA (1999)Google Scholar
  42. 42.
    Maynard, D., Tablan, V., Cunningham, H., Ursu, C., Saggion, H., Bontcheva, K., Wilks, Y.: Architectural elements of language engineering robustness. J Nat. Lang. Engin. 8(2/3), 257–274 (2002)Google Scholar
  43. 43.
    Mohri, M., Nederhof, M.: Regular approximation of context-free grammars through transformations. In: Junqua, J., van Noord, G. (eds.) Robustness in Language and Speech Technology, pp. 153–163. Kluwer, The Netherlands (2001)Google Scholar
  44. 44.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguist. Investig. 30(1), 3–26 (2007)Google Scholar
  45. 45.
    Neumann, G., Piskorski, J.: A shallow text processing core engine. Comput. Intell. 18, 451–476 (2002)Google Scholar
  46. 46.
    Ng, V., Cardie, C.: Combining sample selection and error-driven pruning for machine learning of coreference rules. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, Philadelphia, pp. 55–62 (2002)Google Scholar
  47. 47.
    Patwardhan, S., Riloff, E.: Effective information extraction with semantic affinity patterns and relevant regions. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 717–727 (2007)Google Scholar
  48. 48.
    Phillips, W., Riloff, E.: Exploiting strong syntactic heuristics and co-training to learn semantic lexicons. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002) (2002)Google Scholar
  49. 49.
    Piskorski, J.: ExPRESS – extraction pattern recognition engine and specification suite. In: Proceedings of FSMNLP 2007 (2007)Google Scholar
  50. 50.
    Piskorski, J., Belayeva, J., Atkinson, M.: On refining real-time multilingual news event extraction through deployment of cross-lingual information fusion techniques. In: EISIC, pp. 38–45. IEEE (2011)Google Scholar
  51. 51.
    Piskorski, J., Tanev, H., Atkinson, M., van der Goot, E., Zavarella, V.: Online news event extraction for global crisis surveillance. Trans. Comput. Collectiv. Intell. (5) (2011)Google Scholar
  52. 52.
    Piskorski, J., Wieloch, K., Sydow, M.: On knowledge-poor methods for person name matching and lemmatization for highly inflectional languages. Inf. Retr. 12(3), 275–299 (2009)Google Scholar
  53. 53.
    Poibeau, T., Saggion, H. (eds.): In: Proceedings of the MMIES Workshop, RANLP: International Conference on Recent Advances in Natural Language Processing. Borovets, Bulgaria (2007)Google Scholar
  54. 54.
    Poibeau, T., Saggion, H., Yangarber, R. (eds.): In: Proceedings of the MMIES Workshop, COLING: International Conference on Computational Linguistics. Manchester (2008)Google Scholar
  55. 55.
    Recasens, M., Marquez, L., Sapena, E., Mart, A., Taule, M., Hoste, V., Poesio, M., Versley, Y.: Proceedings of the 5th International Workshop on Semantic Evaluation (SemEval-2010), ACL 2010. Uppsala, Sweden. In: SemEval-2010 Task 1: Coreference Resolution in Multiple Languages, pp. 1–8 (2010)Google Scholar
  56. 56.
    Riloff, E.: Automatically constructing a dictionary for information extraction tasks. In: Proceedings of Eleventh National Conference on Artificial Intelligence (AAAI-93), Washington, DC, pp. 811–816. AAAI/MIT (1993)Google Scholar
  57. 57.
    Riloff, E.: Automatically generating extraction patterns from untagged text. In: Proceedings of Thirteenth National Conference on Artificial Intelligence (AAAI-96), Portland, pp. 1044–1049. AAAI/MIT (1996)Google Scholar
  58. 58.
    Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: an experimental study. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP 2011), pp. 1524–1534. Association for Computational Linguistics, Edinburgh/Scotland (2011)Google Scholar
  59. 59.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of WWW 2010, Raleigh, pp. 851–860. ACM (2010)Google Scholar
  60. 60.
    Settles, B.: Biomedical named entity recognition using conditional random fields and rich feature sets. In: In Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications, pp. 104–107. NLPBA (2004)Google Scholar
  61. 61.
    Shinyama, Y., Sekine, S.: Preemptive information extraction using unrestricted relation discovery. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, HLT-NAACL ’06, pp. 304–311. Association for Computational Linguistics, Stroudsburg (2006)Google Scholar
  62. 62.
    Sidner, C.L., Schultz, T., Stone, M., Zhai, C. (eds.): Multi-Document Relationship Fusion via Constraints on Probabilistic Databases. The Association for Computational Linguistics (2007)Google Scholar
  63. 63.
    Stevenson, M., Greenwood, M.A.: A semantic approach to IE pattern induction. In: Knight, K., Ng, H.T., Oflazer, K. (eds.) ACL. The Association for Computer Linguistics (2005)Google Scholar
  64. 64.
    Sudo, K., Sekine, S., Grishman, R.: Cross-lingual information extraction system evaluation. In: Proceedings of the 20th International Conference on Computational Linguistics, COLING ’04. Association for Computational Linguistics, Stroudsburg (2004)Google Scholar
  65. 65.
    Tanev, H., Piskorski, J., Atkinson, M.: Real-time news event extraction for global crisis monitoring. In: Proceedings of NLDB 2008, London, pp. 207–218 (2008)Google Scholar
  66. 66.
    Thelen, M., Riloff, E.: A bootstrapping method for learning semantic lexicons using extraction pattern contexts. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002) (2002)Google Scholar
  67. 67.
    Verma, S., Vieweg, S., Corvey, W., Palen, L., Martin, J., Palmer, M., Schram, A., Anderson, K.: Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM 2011), Barcelona, pp. 385–392. AAAI (2011)Google Scholar
  68. 68.
    Vieweg, S., Hughes, A., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)Google Scholar
  69. 69.
    Wagner, E.J., Liu, J., Birnbaum, L., Forbus, K.D., Baker, J.: Using explicit semantic models to track situations across news articles. In: Proceedings of the 2006 AAAI Workshop on Event Extraction and Synthesis, pp. 42–47 (2006)Google Scholar
  70. 70.
    Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques, 2nd edn. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)Google Scholar
  71. 71.
    Yangarber, R.: Counter-training in discovery of semantic patterns. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo (2003)Google Scholar
  72. 72.
    Yangarber, R.: Verification of facts across document boundaries. In: Proceedings IIIA-2006: International Workshop on Intelligent Information Access, IIIA-2006 (2006)Google Scholar
  73. 73.
    Yangarber, R., Jokipii, L.: Redundancy-based correction of automatically extracted facts. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, pp. 57–64. Association for Computational Linguistics, Stroudsburg (2005)Google Scholar
  74. 74.
    Yangarber, R., Lin, W., Grishman, R.: Unsupervised learning of generalized names. In: Proceedings of COLING: the 19th International Conference on Computational Linguistics, Taipei (2002)Google Scholar
  75. 75.
    Yates, A., Banko, M., Broadhead, M., Cafarella, M.J., Etzioni, O., Soderland, S.: Textrunner: Open information extraction on the web. In: HLT-NAACL (Demonstrations), Rochester, pp. 25–26 (2007)Google Scholar
  76. 76.
    Zavarella, V., Tanev, H., Piskorski, J.: Event extraction for Italian using a cascade of finite-state grammars. In: Proceedings of FSMNLP 2008, Ispra (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Computer SciencePolish Academy of SciencesWarsawPoland
  2. 2.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations