VLSI Implementation of Hard- and Soft-Output Sphere Decoding for Wide-Band MIMO Systems

  • Christoph Studer
  • Markus Wenk
  • Andreas Burg
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 373)

Abstract

Multiple-input multiple-output (MIMO) technology in combination with orthogonal frequency-division multiplexing (OFDM) is the key to meet the demands for data rate and link reliability of modern wide-band wireless communication systems, such as IEEE 802.11n or 3GPP-LTE. The full potential of such systems can, however, only be achieved by high-performance data-detection algorithms, which typically exhibit prohibitive computational complexity. Hard-output sphere decoding (SD) and soft-output single tree-search (STS) SD are promising means for realizing high-performance MIMO detection and have been demonstrated to enable efficient implementations in practical systems. In this chapter, we consider the design and optimization of register transfer-level implementations of hard-output SD and soft-output STS-SD with minimum area-delay product, which are well-suited for wide-band MIMO systems. We explain in detail the design, implementation, and optimization of VLSI architectures and present corresponding implementation results for 130 nm CMOS technology. The reported implementations significantly outperform the area-delay product of previously reported hard-output SD and soft-output STS-SD implementations.

Keywords

VLSI implementation MIMO-OFDM communication systems sphere decoding (SD) single tree-search (STS) SD algorithm 

References

  1. 1.
    Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge Univ. Press (2003)Google Scholar
  2. 2.
    Bölcskei, H., Gesbert, D., Papadias, C., van der Veen, A.J. (eds.): Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge Univ. Press (2006)Google Scholar
  3. 3.
    IEEE Draft Standard; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications; Amendment 4: Enhancements for Higher Throughput, P802.11n/D3.0 (September 2007)Google Scholar
  4. 4.
    3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 9), 3GPP Organizational Partners TS 36.212, Rev. 8.3.0 (May 2008)Google Scholar
  5. 5.
    Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Computation 44(170), 463–471 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Programming 66(2), 181–191 (1994)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Viterbo, E., Biglieri, E.: A universal decoding algorithm for lattice codes. Colloq. GRETSI 14, 611–614 (1993)Google Scholar
  8. 8.
    Viterbo, E., Boutros, J.: A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory 45(5), 1639–1642 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hochwald, B.M., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Commun. 51(3), 389–399 (2003)CrossRefGoogle Scholar
  11. 11.
    Studer, C., Burg, A., Bölcskei, H.: Soft-output sphere decoding: Algorithms and VLSI implementation. IEEE J. Sel. Areas Commun. 26(2), 290–300 (2008)CrossRefGoogle Scholar
  12. 12.
    Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bölcskei, H.: VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE J. Solid-State Circuits 40(7), 1566–1577 (2005)CrossRefGoogle Scholar
  13. 13.
    Studer, C., Seethaler, D., Bölcskei, H.: Finite lattice-size effects in MIMO detection. In: Proc. of 42th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA (October 2008)Google Scholar
  14. 14.
    Burg, A., Borgmann, M., Wenk, M., Studer, C., Bölcskei, H.: Advanced receiver algorithms for MIMO wireless communications. In: Proc. of DATE, pp. 593–598 (March 2006)Google Scholar
  15. 15.
    Studer, C.: Iterative MIMO decoding: Algorithms and VLSI implementation aspects. Ph.D. dissertation, ETH Zürich, Switzerland, Series in Microelectronics, vol. 202. Hartung-Gorre Verlag Konstanz (2009)Google Scholar
  16. 16.
    Wübben, D., Böhnke, R., Rinas, J., Kühn, V., Kammeyer, K.-D.: Efficient algorithm for decoding layered space-time codes. IEE Electronics Letters 37(22), 1348–1350 (2001)CrossRefGoogle Scholar
  17. 17.
    Wübben, D., Böhnke, R., Kühn, V., Kammeyer, K.-D.: MMSE extension of V-BLAST based on sorted QR decomposition. In: Proc. IEEE 58th VTC, pp. 508–512 (October 2003)Google Scholar
  18. 18.
    Wang, R., Giannakis, G.B.: Approaching MIMO channel capacity with reduced-complexity soft sphere decoding. In: Proc. of IEEE Wireless Communications and Networking Conf (WCNC), vol. 3, pp. 1620–1625 (March 2004)Google Scholar
  19. 19.
    Yee, M.S.: Max-Log-Map sphere decoder. In: Proc. IEEE ICASSP 2005, vol. 3, pp. 1013–1016 (March 2005)Google Scholar
  20. 20.
    Witte, E.M., Borlenghi, F., Ascheid, G., Leupers, R., Meyr, H.: A scalable VLSI architecture for soft-input soft-output depth-first sphere decoding (2009), http://arxiv.org/abs/0910.3427
  21. 21.
    Wenk, M., Bruderer, L., Burg, A., Studer, C.: Area- and throughput-optimized VLSI architecture of sphere decoding. In: Proc. of IEEE/IFIP Int. Conf. on VLSI and System-on-Chip (VLSI-SoC), Madrid, Spain (September 2010)Google Scholar
  22. 22.
    Hess, C., Wenk, M., Burg, A., Luethi, P., Studer, C., Felber, N., Fichtner, W.: Reduced-complexity MIMO detector with close-to ML error rate performance. In: Proc. 17th ACM Great Lakes Symposium on VLSI, pp. 200–203 (2007)Google Scholar
  23. 23.
    Mennenga, B., Fettweis, G.: Search sequence determination for tree search based detection algorithms. In: IEEE Sarnoff Symposium, pp. 1–6 (April 2009)Google Scholar
  24. 24.
    Chun-Hao, L., To-Ping, W., Tzi-Dar, C.: A 74.8 mW soft-output detector IC for 8×8 spatial-multiplexing MIMO communications. IEEE J. Solid-State Circuits 45(2), 411–421 (2010)CrossRefGoogle Scholar
  25. 25.
    Seethaler, D., Bölcskei, H.: Performance and complexity analysis of infinity-norm sphere-decoding. IEEE Trans. Inf. Theory 56(3), 1085–1105 (2010)CrossRefGoogle Scholar
  26. 26.
    Erceg, V., et al.: TGn channel models. IEEE 802.11-03/940r4 (May 2004)Google Scholar
  27. 27.
    Burg, A., Wenk, M., Fichtner, W.: VLSI implementation of pipelined sphere decoding with early termination. In: Proc. EUSIPCO (September 2006)Google Scholar
  28. 28.
    Lee, J., Park, S.-C., Park, S.: A pipelined VLSI architecture for a list sphere decoder. In: Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS 2006), pp. 397–400 (September 2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Christoph Studer
    • 1
  • Markus Wenk
    • 2
  • Andreas Burg
    • 3
  1. 1.Dept. of Electrical and Computer EngineeringRice UniversityHoustonUSA
  2. 2.Dept. of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland
  3. 3.School of EngineeringEPF LausanneLausanneSwitzerland

Personalised recommendations