Control Electronics Integration toward Endoscopic Capsule Robot Performing Legged Locomotion and Illumination

  • Oscar Alonso
  • Angel Diéguez
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 373)


Miniaturization of sensors and actuators up to the point of active features in endoscopic capsules, such as locomotion or surgery, is a challenge. VECTOR endoscopic capsule has been designed to be the first endoscopic capsule with active locomotion. It is equipped with mini-legs driven by Brushless DC (BLDC) micro motors. In addition it can be also equipped with some other sensors and actuators, like a liquid lens, that permits to enable advanced functions. Those modules are managed by an Application Specific Integrated Circuit (ASIC) specifically designed for the VECTOR capsule. The ASIC is a complete System-On-Chip (SoC) and integrates all the electronics needed to enable the legged locomotion and the sensing and actuating functions of the capsule in an unique chip. The SoC also permits other functions for endoscopic capsules such as drug delivery and biopsy. The size of the SoC is 5.1 mm x 5.2 mm in a 0.35 μm high voltage CMOS technology.


Active capsular endoscopy gastrointestinal exploration Brushless motor liquid lens control ASIC electronics 


  1. 1.
    Fujinon Endoscopic Systems 2003-07,
  2. 2.
    Cazzato, I.A., Cammarota, G., Nista, E.C., Cesaro, P., et al.: Diagnostic and Therapeutic Impact of Double-Balloon Enteroscopy (DBE) in a Series of 100 Patients with Suspected Small Bowel Diseases. Dig. Liver Dis. 39(5), 483–487 (2007)CrossRefGoogle Scholar
  3. 3.
    Muscarella, L.F.: Infection Control, and the Clinical Practice of Push Enteroscopy. Endoscopic Shuffling, Gastroenterology Nursing 30(2), 109–115 (2007)Google Scholar
  4. 4.
    Brown, G.J., Saunders, B.P.: Advances in colonic imaging: technical improvements in colonoscopy. Eur. J. Gastroenterol Hepatol 17(8), 785–792 (2005)CrossRefGoogle Scholar
  5. 5.
    Lee, Y.C., Wang, H.P., Chiu, H.M., Lin, C.P., Huang, S.P., Lai, Y.P., Wu, M.S., Chen, M.F., Lin, J.T.: Factors determining post-colonoscopy abdominal pain: prospective study of screening colonoscopy in 1000 subjects. J. Gastroenterol Hepatol 21(10), 1575–1580 (2006)CrossRefGoogle Scholar
  6. 6.
    Park, C.H., Lee, W.S., Joo, Y.E., Kim, H.S., Choi, S.K., Rew, J.S., Kim, S.J.: Sedation-free colonoscopy using an upper endoscope is tolerable and effective in patients with low body mass index: a prospective randomized study. Am. J. Gastroenterol 101(11), 2504–2510 (2006)CrossRefGoogle Scholar
  7. 7.
    Rubin, P.H., Waye, J.D.: Colonoscopicpolypectomy: a critical review of recent literature. Curr Gastroenterol Rep. 8(5), 430–433 (2006)CrossRefGoogle Scholar
  8. 8.
    Levin, T.R., Zhao, W., Conell, C., Seeff, L.C., Manninen, D.L., Shapiro, J.A., Schulman, J.: Complications of colonoscopy in an integrated health care delivery system. Ann. Intern. Med. 145(12), 880–886 (2006)Google Scholar
  9. 9.
    Janssens, J.F.: Flexible sigmoidoscopy as a screening test for colorectal cancer. Acta Gastroenterol Belg. 68(2), 248–249 (2005)Google Scholar
  10. 10.
    Han, Y., Uno, Y., Munakata, A.: Does flexible small-diameter colonoscope reduce insertion pain during colonoscopy? World J. Gastroenterol. 6(5), 659–663 (2000)Google Scholar
  11. 11.
    Source SMIT – Society for Medical Innovation & Technology; presented at the SMIT Congress 2005, Naples, Italy (September 2005)Google Scholar
  12. 12.
    Iddan, G., Meron, G., Glukhovsky, A., Swain, P.: Wireless capsule endoscopy. Nature 405(6), 417 (2000)CrossRefGoogle Scholar
  13. 13.
    Gheorghe, C., Iacob, R., Bancila, I.: Olympus capsule endoscopy for small bowel examination. J. Gastrointestin Liver Dis. 16, 309–313 (2007)Google Scholar
  14. 14.
    Megan Boysen, M.D., Michael Ritter, M.D.: Small Bowel Obstruction from Capsule Endoscopy. Western J. Emerg. Med. 11(1), 71–73 (2010)Google Scholar
  15. 15.
    Mishkin, D.S., Chuttani, R., Croffie, J., et al.: ASGE Technology Status; Evaluation Report: wireless capsule endoscopy. Gastrointest Endosc. 63(4), 539–545 (2006)CrossRefGoogle Scholar
  16. 16.
    Saurin, J.C.: Capsule endoscopy. Endoscopy 39, 986–991 (2007)CrossRefGoogle Scholar
  17. 17.
    Adler, D., Gostout, C.: Wireless Capsule Endoscopy. Hospital Physician, 14–22 (2003)Google Scholar
  18. 18.
  19. 19.
    Glass, P., Cheung, E., Wang, H., Appasamy, R., Sitti, M.: A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus. In: Porc. IEEE International Conference on Biomedical Robotics and Biomechatronics (2008)Google Scholar
  20. 20.
    Baumgartner, R., et al.: A fluorescence imaging device for endoscopic detection of early stage cancer – instrumental and experimental studies. Photochemistry and Photobiology 46, 759–763 (2008), doi:10.1111/j.1751-1097.1987.tb04844.xCrossRefGoogle Scholar
  21. 21.
    Zeng, H., et al.: Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract. Bioimaging 6(4), 151–165 (1998), doi:10.1002/1361-6374CrossRefGoogle Scholar
  22. 22.
    Swain, P.: The future of wireless capsule endoscopy. s.n., World J. Gastroenterol. 14, 4142–4145 (2008)CrossRefGoogle Scholar
  23. 23.
    Carta, R., Thoné, J., Puers, R.: A 3D Ferrite Coil Receiver for Wireless Power Supply of Endoscopic Capsules. In: Proceedings of the Eurosensors XXIII Conference, vol. 1, pp. 477–480 (2009), doi:10.1016/j.proche.2009.07.119. 1Google Scholar
  24. 24.
    Carta, R., et al.: Wireless power supply as enabling technology towards active locomotion in capsular endoscopy. In: Proc. of Eurosensors XXII, pp. 1369–1372 (2008)Google Scholar
  25. 25.
  26. 26.
    Thoné, J., et al.: Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy. Sens. Actuators A: Phys (2009), doi:10.1016/j.sna.2008.11.027Google Scholar
  27. 27.
    Synopsys Inc. Guide to Design Ware DW8051 Macrocell Documentation (2005)Google Scholar
  28. 28.
    Philips Semiconductors. 80C51 8-bit microcontroller family Datasheet (2000)Google Scholar
  29. 29.
    HV895 (Cited May 02, 2010),
  30. 30.
  31. 31.
  32. 32.
    Hui, T.S., Basu, K.P.: Permanent magnet brushless motor control techniques. In: Proc. of the National Power and Energy Conference, pp. 133–138 (2003)Google Scholar
  33. 33.
    Kang, B., et al.: Analysis of torque ripple in BLDC motor with commutation time. In: IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1044–1048 (2001)Google Scholar
  34. 34.
    Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machines Piscataway. IEEE Press (1996)Google Scholar
  35. 35.
    Chapman, P.L., Krein, P.T.: Smaller is better? [micromotors and electric drives]. IEEE Ind. Appl. Mag. 9(1), 62–67 (2003)CrossRefGoogle Scholar
  36. 36.
    Nam, K., et al.: Reducing torque ripple of brushless DC motor by varying input voltage. IEEE Transactions on Magnetics 42, 1307–1310 (2006)Google Scholar
  37. 37.
    Ahmadi, M.M., Jullien, G.: A new CMOS charge pump for low voltage applications. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 4261–4264 (2005)Google Scholar
  38. 38.
    Alonso, O., et al.: Control electronics integration toward endoscopic capsule robot performing legged locomotion and illumination. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2798–2803 (2010), doi:10.1109/IROS.2010.5649283Google Scholar
  39. 39.
    Alonso, O., et al.: Enabling multiple robotic functions in an endoscopic capsule for the entire gastrointestinal tract exploration. In: Proceedings of the ESSCIRC, pp. 386–389 (2010), doi:10.1109/ESSCIRC.2010.5619724Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Oscar Alonso
    • 1
  • Angel Diéguez
    • 1
  1. 1.Electronics DepartmentUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations