Semantic Matchmaking of Assets to Missions

  • Murat Sensoy
  • Wamberto Vasconcelos
  • Geeth de Mel
  • Timothy J. Norman
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 98)


Some resources (i.e., assets) can be critical to accomplish missions. Unfortunately, in many settings these resources are limited. Scarcity of the critical assets and importance of the missions create an incentive for the organizations to cooperate by sharing their assets with an expectation of carrying out their missions successfully even if the assets in hand are limited. In this paper, we propose a multiagent framework where mission plans are semantically described so that a hierarchical multiagent system can be used to represent each mission. Using the semantic description of the mission plans, the agents reason about resources required for their missions and cooperatively decide on the assets that should be shared to carry out those missions. This is achieved at different levels of the agent hierarchy where policies and constraints are used during the decision process. Our experiments show that our approach leads to a better utilization of the assets and significantly improves the number of achievable missions when the number of available assets is limited.


Semantic Web Multiagent Systems Resource Allocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Şensoy, M., Vasconcelos, W., de Mel, G., Norman, T.: Selection of resources for missions using semantic-aware cooperative agents. In: Proceedings of the International Workshop on Agent-Based Technologies and Applications for Enterprise Interoperability (ATOP 2009), pp. 73–84 (2009)Google Scholar
  2. 2.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic markup for web services (November 2004)Google Scholar
  3. 3.
    Antoniou, G., Harmelen, F.v.: A Semantic Web Primer, 2nd edn. (Cooperative Information Systems). The MIT Press (2008)Google Scholar
  4. 4.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  5. 5.
    Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design of a malleable object-oriented Prolog engine. In: Wainwright, R.L., Haddad, H.M., Menezes, R., Viroli, M. (eds.) 23rd ACM Symposium on Applied Computing (SAC 2008), pp. 191–197 (2009)Google Scholar
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  7. 7.
    Sterling, L., Yalcinalp, L.U.: Explaining Prolog based expert systems using a layered meta-interpreter. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, IJCAI 1989, pp. 66–71 (1989)Google Scholar
  8. 8.
    Moffett, J., Sloman, M.: Policy Conflict Analysis in Distributed Systems Management. Journal of Organizational Computing (1993)Google Scholar
  9. 9.
    Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions. In: Leite, J., Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 166–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Johnson, M.P., Rowaihy, H., Pizzocaro, D., Bar-Noy, A., Chalmers, S., La Porta, T., Preece, A.: Frugal Sensor Assignment. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 219–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bar-Noy, A., Brown, T., Porta, T.L.: Assigning sensors to competing missions. In: Proceedings of the Globecom 2008 (November 2008)Google Scholar
  12. 12.
    Robin, A., Havens, S., Cox, S., Ricker, J., Lake, R., Niedzwiadek, H.: OpenGIS© sensor model language (SensorML) implementation specification. Technical report, Open Geospatial Consortium Inc. (2006)Google Scholar
  13. 13.
    Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a sensor ontology: A practical approach leveraging iso and ogc models. In: Proceedings of the 2005 International Conference on Artificial Intelligence (ICAI), pp. 637–643 (2005)Google Scholar
  14. 14.
    Bermudez, L., Graybeal, J., Arko, R.: A marine platforms ontology: Experiences and lessons. In: Proceedings of the ISWC 2006 Workshop on Semantic Sensor Networks (2006)Google Scholar
  15. 15.
    Wang, Y., Cao, J., Li, M.: Goal-driven semantic description and query for grid workflow. In: Proceedings of the Third International Conference on Semantics, Knowledge and Grid, pp. 598–599 (2007)Google Scholar
  16. 16.
    Şensoy, M., de Mel, G., Vasconcelos, W., Norman, T.J.: Ontological logic programming. In: The International Conference on Web Intelligence, Mining and Semantics, WIMS 2011 (2011) (to appear)Google Scholar
  17. 17.
    Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85 (2010)CrossRefGoogle Scholar
  18. 18.
    Hanus, M., Kuchen, H., Moreno-Navarro, J.: Curry: A truly functional logic language. In: Proc. ILPS 1995 Workshop on Visions for the Future of Logic Programming, pp. 95–107 (1995)Google Scholar
  19. 19.
    Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design of a malleable object-oriented Prolog engine. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 191–197. ACM, New York (2008)Google Scholar
  20. 20.
    Moss, C.: Prolog++: The Power of Object-Oriented and Logic Programming. Addison-Wesley (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Murat Sensoy
    • 1
  • Wamberto Vasconcelos
    • 1
  • Geeth de Mel
    • 1
  • Timothy J. Norman
    • 1
  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations