Coarse-Grained Modeling of Protein Dynamics

  • Sebastian Kmiecik
  • Jacek Wabik
  • Michal Kolinski
  • Maksim Kouza
  • Andrzej Kolinski
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)


Simulations of protein dynamics may work on different levels of molecular detail. The levels of simplification (coarse-graining) can range from very low to atomic resolution and may concern different simulation aspects (including protein representation, interaction schemes or models of molecular motion). So-called coarse-grained (CG) models offer many advantages, unreachable by classical simulation tools, as demonstrated in numerous studies of protein dynamics. Followed by a brief introduction, we present example applications of CG models for efficient predictions of biophysical mechanisms. We discuss the following topics: mechanisms of chaperonin action, mechanical properties of proteins, membrane proteins, protein-protein interactions and intrinsically unfolded proteins. Presently, these areas represent emerging application fields of CG simulation models.


CG coarse-grained MD Molecular Dynamics MC Monte Carlo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeln, S., Frenkel, D.: Disordered Flanks Prevent Peptide Aggregation. PLoS Comput. Biol. 4(12), e1000241 (2008), doi:10.1371/journal.pcbi.1000241Google Scholar
  2. Arad-Haase, G., Chuartzman, S.G., Dagan, S., Nevo, R., Kouza, M., Mai, B.K., Nguyen, H.T., Li, M.S., Reich, Z.: Mechanical unfolding of acylphosphatase studied by single-molecule force spectroscopy and MD simulations. Biophys. J. 99(1), 238–247 (2010), doi:10.1016/j.bpj.2010.04.004CrossRefGoogle Scholar
  3. Arkhipov, A., Freddolino, P.L., Schulten, K.: Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14(12), 1767–1777 (2006), doi:10.1016/j.str.2006.10.003CrossRefGoogle Scholar
  4. Auer, S., Meersman, F., Dobson, C.M., Vendruscolo, M.: A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates. PLoS Comput. Biol. 4(11), e1000222 (2008), doi:10.1371/journal.pcbi.1000222Google Scholar
  5. Baumketner, A., Jewett, A., Shea, J.E.: Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332(3), 701–713 (2003), doi:10.1016/S0022-2836(03)00929-XCrossRefGoogle Scholar
  6. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978), doi:10.1126/science.347575CrossRefGoogle Scholar
  7. Best, R.B., Hummer, G.: Protein folding kinetics under force from molecular simulation. J. Am. Chem. Soc. 130(12), 3706–3707 (2008), doi:10.1021/ja0762691CrossRefGoogle Scholar
  8. Best, R.B., Paci, E., Hummer, G., Dudko, O.K.: Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. Journal of Physical Chemistry B 112(19), 5968–5976 (2008), doi:10.1021/Jp075955jCrossRefGoogle Scholar
  9. Betancourt, M.R., Thirumalai, D.: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287(3), 627–644 (1999), doi:10.1006/jmbi.1999.2591CrossRefGoogle Scholar
  10. Bindschadler, M.: Modeling actin dynamics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2(4), 481–488 (2010), doi:10.1002/wsbm.62CrossRefGoogle Scholar
  11. Brockwell, D.J., Paci, E., Zinober, R.C., Beddard, G.S., Olmsted, P.D., Smith, D.A., Perham, R.N., Radford, S.E.: Pulling geometry defines the mechanical resistance of a beta-sheet protein (vol 10, pg 731, 2003). Nature Structural Biology 10(10), 872–872 (2003), doi:10.1038/Nsb1003-872bGoogle Scholar
  12. Bustamante, C., Chemla, Y.R., Forde, N.R., Izhaky, D.: Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004), doi:10.1146/annurev.biochem.72.121801.161542CrossRefGoogle Scholar
  13. Caraglio, M., Imparato, A., Pelizzola, A.: Pathways of mechanical unfolding of FnIII(10): low force intermediates. J. Chem. Phys. 133(6), 065101 (2010), doi:10.1063/1.3464476Google Scholar
  14. Carrion-Vazquez, M., Li, H., Lu, H., Marszalek, P.E., Oberhauser, A.F., Fernandez, J.M.: The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 10(9), 738–743 (2003), doi:10.1038/nsb965CrossRefGoogle Scholar
  15. Chang, S., Hu, J.P., Lin, P.Y., Jiao, X., Tian, X.H.: Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol. Biosyst. 6(12), 2430–2438 (2010), doi:10.1039/c005266cCrossRefGoogle Scholar
  16. Chetwynd, A.P., Scott, K.A., Mokrab, Y., Sansom, M.S.: CGDB: a database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations. Mol. Membr. Biol. 25(8), 662–669 (2008), doi:10.1080/09687680802446534CrossRefGoogle Scholar
  17. Chu, J.W., Voth, G.A.: Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90(5), 1572–1582 (2006), doi:10.1529/biophysj.105.073924CrossRefGoogle Scholar
  18. Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a Go-like model of titin. Proteins 49(1), 114–124 (2002), doi:10.1002/prot.10087CrossRefGoogle Scholar
  19. Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298(5), 937–953 (2000), doi:10.1006/jmbi.2000.3693CrossRefGoogle Scholar
  20. De Sancho, D., Best, R.B.: Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1alpha with CBP. Mol Biosyst. 8(1), 256–267 (2012), doi:10.1039/c1mb05252gCrossRefGoogle Scholar
  21. Di Fenza, A., Rocchia, W., Tozzini, V.: Complexes of HIV-1 integrase with HAT proteins: Multiscale models, dynamics, and hypotheses on allosteric sites of inhibition. Proteins: Structure, Function, and Bioinformatics 76(4), 946–958 (2009), doi:10.1002/prot.22399CrossRefGoogle Scholar
  22. Dudko, O.K., Hummer, G., Szabo, A.: Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96(10), 108101 (2006), doi:10.1103/PhysRevLett.96.108101CrossRefGoogle Scholar
  23. Eliezer, D.: Biophysical characterization of intrinsically disordered proteins. Current Opinion in Structural Biology 19(1), 23–30 (2009), doi:10.1016/ Scholar
  24. Evans, E., Ritchie, K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72(4), 1541–1555 (1997), doi:10.1016/S0006-3495(97)78802-7CrossRefGoogle Scholar
  25. Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature 463(7280), 485–492 (2010), doi:10.1038/nature08908CrossRefGoogle Scholar
  26. Florin, E.L., Moy, V.T., Gaub, H.E.: Adhesion forces between individual ligand-receptor pairs. Science 264(5157), 415–417 (1994), doi:10.1126/science.8153628CrossRefGoogle Scholar
  27. Fowler, S.B., Best, R.B., Toca Herrera, J.L., Rutherford, T.J., Steward, A., Paci, E., Karplus, M., Clarke, J.: Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol. 322(4), 841–849 (2002), doi:10.1016/S0022-2836(02)00805-7CrossRefGoogle Scholar
  28. Frembgen-Kesner, T., Elcock, A.H.: Absolute Protein-Protein Association Rate Constants from Flexible, Coarse-Grained Brownian Dynamics Simulations: The Role of Intermolecular Hydrodynamic Interactions in Barnase-Barstar Association. Biophys. J. 99(9), L75–L77 (2010), doi:10.1016/j.bpj.2010.09.006Google Scholar
  29. Granzier, H.L., Labeit, S.: The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94(3), 284–295 (2004), doi:10.1161/01.RES.0000117769.88862.F8CrossRefGoogle Scholar
  30. Hall, B.A., Chetwynd, A.P., Sansom, M.S.: Exploring peptide-membrane interactions with coarse-grained MD simulations. Biophys. J. 100(8), 1940–1948 (2011), doi:10.1016/j.bpj.2011.02.041CrossRefGoogle Scholar
  31. Hall, B.A., Sansom, M.S.P.: Coarse-Grained MD Simulations and Protein−Protein Interactions: The Cohesin−Dockerin System. Journal of Chemical Theory and Computation 5(9), 2465–2471 (2009), doi:10.1021/ct900140wCrossRefGoogle Scholar
  32. Hanson, P.I., Whiteheart, S.W.: AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6(7), 519–529 (2005), doi:10.1038/nrm1684CrossRefGoogle Scholar
  33. He, C., Genchev, G.Z., Lu, H., Li, H.: Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations. J. Am. Chem. Soc. 134(25), 10428–10435 (2012), doi:10.1021/ja3003205CrossRefGoogle Scholar
  34. Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins 68(3), 646–661 (2007), doi:10.1002/prot.21371CrossRefGoogle Scholar
  35. Huang, Y., Liu, Z.: Kinetic Advantage of Intrinsically Disordered Proteins in Coupled Folding–Binding Process: A Critical Assessment of the “Fly-Casting” Mechanism. Journal of Molecular Biology 393(5), 1143–1159 (2009), doi:10.1016/j.jmb.2009.09.010CrossRefGoogle Scholar
  36. Hunte, C.: Specific protein-lipid interactions in membrane proteins. Biochem. Soc. Trans. 33(Pt. 5), 938–942 (2005), doi:10.1042/BST20050938Google Scholar
  37. Irback, A., Mitternacht, S., Mohanty, S.: Dissecting the mechanical unfolding of ubiquitin. Proc. Natl. Acad. Sci. U S A 102(38), 13427–13432 (2005), doi:10.1073/pnas.0501581102CrossRefGoogle Scholar
  38. Jacob, E., Horovitz, A., Unger, R.: Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study. Bioinformatics 23(13), i240–i248 (2007), doi:10.1093/bioinformatics/btm180CrossRefGoogle Scholar
  39. Jewett, A.I., Baumketner, A., Shea, J.E.: Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc. Natl. Acad. Sci. U S A 101(36), 13192–13197 (2004), doi:10.1073/pnas.0400720101CrossRefGoogle Scholar
  40. Jewett, A.I., Shea, J.E.: Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell. Mol. Life Sci. 67(2), 255–276 (2009)CrossRefGoogle Scholar
  41. Kalli, A.C., Hall, B.A., Campbell, I.D., Sansom, M.S.: A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations. Structure 19(10), 1477–1484 (2011), doi:10.1016/j.str.2011.07.014CrossRefGoogle Scholar
  42. Kamerlin, S.C., Vicatos, S., Dryga, A., Warshel, A.: Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annual Review of Physical Chemistry 62, 41–64 (2011), doi:10.1146/annurev-physchem-032210-103335CrossRefGoogle Scholar
  43. Kim, Y.C., Hummer, G.: Coarse-grained Models for Simulations of Multiprotein Complexes: Application to Ubiquitin Binding. Journal of Molecular Biology 375(5), 1416–1433 (2008), doi:10.1016/j.jmb.2007.11.063CrossRefGoogle Scholar
  44. Kim, Y.C., Tang, C., Clore, G.M., Hummer, G.: Replica exchange simulations of transient encounter complexes in protein-protein association. Proc. Natl. Acad. Sci. U S A 105(35), 12855–12860 (2008), doi:10.1073/pnas.0802460105CrossRefGoogle Scholar
  45. Kmiecik, S., Gront, D., Kolinski, A.: Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. Bmc Struct. Biol. 7(43), 43 (2007), doi:10.1186/1472-6807-7-43CrossRefGoogle Scholar
  46. Kmiecik, S., Gront, D., Kouza, M., Kolinski, A.: From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A. J. Phys. Chem. B 116(23), 7026–7032 (2012), doi:10.1021/jp301720wCrossRefGoogle Scholar
  47. Kmiecik, S., Jamroz, M., Kolinski, A.: Multiscale Approach to Protein Folding Dynamics. In: Kolinski, A. (ed.) Multiscale Approaches to Protein Modeling, pp. 281–293. Springer, New York (2011), doi:10.1007/978-1-4419-6889-0_12CrossRefGoogle Scholar
  48. Kmiecik, S., Kolinski, A.: Folding pathway of the b1 domain of protein G explored by multiscale modeling. Biophys. J. 94(3), 726–736 (2008), doi:10.1529/biophysj.107.116095CrossRefGoogle Scholar
  49. Kmiecik, S., Kolinski, A.: Simulation of chaperonin effect on protein folding: a shift from nucleation-condensation to framework mechanism. J. Am. Chem. Soc. 133(26), 10283–10289 (2011), doi:10.1021/ja203275fCrossRefGoogle Scholar
  50. Knepp, A.M., Periole, X., Marrink, S.J., Sakmar, T.P., Huber, T.: Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51(9), 1819–1821 (2012), doi:10.1021/bi3001598CrossRefGoogle Scholar
  51. Koga, N., Takada, S.: Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proc. Natl. Acad. Sci. U S A 103(14), 5367–5372 (2006), doi:10.1073/pnas.0509642103CrossRefGoogle Scholar
  52. Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica 51(2), 349–371 (2004), doi:035001349Google Scholar
  53. Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004), doi:10.1016/j.polymer.2003.10.064CrossRefGoogle Scholar
  54. Kouza, M., Hu, C.K., Li, M.S.: New force replica exchange method and protein folding pathways probed by force-clamp technique. J. Chem. Phys. 128(4), 045103 (2008), doi:10.1063/1.2822272Google Scholar
  55. Kouza, M., Hu, C.K., Zung, H., Li, M.S.: Protein mechanical unfolding: Importance of non-native interactions. J. Chem. Phys. 131(21), 215103 (2009), doi:10.1063/1.3272275CrossRefGoogle Scholar
  56. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(7), 284–303 (1940), doi:10.1016/S0031-8914(40)90098-2MathSciNetMATHCrossRefGoogle Scholar
  57. Kumar, S., Li, M.S.: Biomolecules under mechanical force. Phys. Rep. 486(1-2), 1–74 (2010), doi:10.1016/j.physrep.2009.11.001CrossRefGoogle Scholar
  58. Kurcinski, M., Kolinski, A.: Theoretical study of molecular mechanism of binding TRAP220 coactivator to Retinoid X Receptor alpha, activated by 9-cis retinoic acid. The Journal of Steroid Biochemistry and Molecular Biology 121(1-2), 124–129 (2010), doi:10.1016/j.jsbmb.2010.03.086CrossRefGoogle Scholar
  59. Lau, T.L., Kim, C., Ginsberg, M.H., Ulmer, T.S.: The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. Embo. J. 28(9), 1351–1361 (2009), doi:10.1038/emboj.2009.63CrossRefGoogle Scholar
  60. Lee, A.G.: How lipids affect the activities of integral membrane proteins. Bba-Biomembranes 1666(1-2), 62–87 (2004), doi:10.1016/j.bbamem.2004.05.012CrossRefGoogle Scholar
  61. Lee, E.H., Hsin, J., Sotomayor, M., Comellas, G., Schulten, K.: Discovery Through the Computational Microscope. Structure 17(10), 1295–1306 (2009), doi:10.1016/j.str.2009.09.001CrossRefGoogle Scholar
  62. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975), doi:10.1038/253694a0CrossRefGoogle Scholar
  63. Li, L., Huang, H.H., Badilla, C.L., Fernandez, J.M.: Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 345(4), 817–826 (2005), doi:10.1016/j.jmb.2004.11.021CrossRefGoogle Scholar
  64. Li, M.S.: Secondary structure, mechanical stability, and location of transition state of proteins. Biophys. J. 93(8), 2644–2654 (2007), doi:10.1529/biophysj.107.106138CrossRefGoogle Scholar
  65. Li, M.S., Kouza, M.: Dependence of protein mechanical unfolding pathways on pulling speeds. J. Chem. Phys. 130(14), 145102 (2009), doi:10.1063/1.3106761CrossRefGoogle Scholar
  66. Li, M.S., Kouza, M., Hu, C.K.: Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin. Biophys. J. 92(2), 547–561 (2007), doi:10.1529/biophysj.106.087684CrossRefGoogle Scholar
  67. Lichter, S., Rafferty, B., Flohr, Z., Martini, A.: Protein high-force pulling simulations yield low-force results. PLoS One 7(4), e34781 (2012), doi:10.1371/journal.pone.0034781Google Scholar
  68. Liphardt, J., Onoa, B., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Reversible unfolding of single RNA molecules by mechanical force. Science 292(5517), 733–737 (2001), doi:10.1126/science.1058498CrossRefGoogle Scholar
  69. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75(2), 662–671 (1998), doi:10.1016/S0006-3495(98)77556-3CrossRefGoogle Scholar
  70. Lu, H., Schulten, K.: The key event in force-induced unfolding of Titin’s immunoglobulin domains. Biophys. J. 79(1), 51–65 (2000), doi:10.1016/S0006-3495(00)76273-4CrossRefGoogle Scholar
  71. Lucent, D., England, J., Pande, V.: Inside the chaperonin toolbox: theoretical and computational models for chaperonin mechanism. Physical Biology 6(1), 015003 (2009), doi:10.1088/1478-3975/6/1/015003Google Scholar
  72. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007), doi:10.1021/jp071097fCrossRefGoogle Scholar
  73. Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Mechanical unfolding intermediates in titin modules. Nature 402(6757), 100–103 (1999), doi:10.1038/47083CrossRefGoogle Scholar
  74. Mittag, T., Kay, L.E., Forman-Kay, J.D.: Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition 23(2), 105–116 (2010), doi:10.1002/jmr.961Google Scholar
  75. Munoz, V., Henry, E.R., Hofrichter, J., Eaton, W.A.: A statistical mechanical model for beta-hairpin kinetics. Proc. Natl. Acad. Sci. U S A 95(11), 5872–5879 (1998), doi:10.1073/pnas.95.11.5872CrossRefGoogle Scholar
  76. Nilsson, J., Persson, B., von Heijne, G.: Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60(4), 606–616 (2005), doi:10.1002/prot.20583CrossRefGoogle Scholar
  77. Norgaard, A.B., Ferkinghoff-Borg, J., Lindorff-Larsen, K.: Experimental Parameterization of an Energy Function for the Simulation of Unfolded Proteins. Biophys. J. 94(1), 182–192 (2008), doi:10.1529/biophysj.107.108241CrossRefGoogle Scholar
  78. Okazaki, K.-I., Sato, T., Takano, M.: Temperature-Enhanced Association of Proteins Due to Electrostatic Interaction: A Coarse-Grained Simulation of Actin–Myosin Binding. J. Am. Chem. Soc. 134(21), 8918–8925 (2012), doi:10.1021/ja301447jCrossRefGoogle Scholar
  79. Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. U S A 97(12), 6521–6526 (2000), doi:10.1073/pnas.100124597CrossRefGoogle Scholar
  80. Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming–the cystine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134(8), 085102 (2011), doi:10.1063/1.3553801Google Scholar
  81. Periole, X., Knepp, A.M., Sakmar, T.P., Marrink, S.J., Huber, T.: Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J. Am. Chem. Soc. 134(26), 10959–10965 (2012), doi:10.1021/ja303286eCrossRefGoogle Scholar
  82. Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277(4), 985–994 (1998), doi:10.1006/jmbi.1998.1645CrossRefGoogle Scholar
  83. Rathore, N., Knotts IV, T.A., de Pablo, J.J.: Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations. Biophys J. 90(5), 1767–1773 (2006), doi:10.1529/biophysj.105.071076CrossRefGoogle Scholar
  84. Rauscher, S., Pomes, R.: Molecular simulations of protein disorder. Biochem. Cell. Biol. 88(2), 269–290 (2010), doi:10.1139/o09-169CrossRefGoogle Scholar
  85. Rauscher, S., Pomès, R.: Molecular simulations of protein disorderThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal’s usual peer review process. Biochemistry and Cell Biology 88(2), 269–290 (2010), doi:10.1139/o09-169CrossRefGoogle Scholar
  86. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109–1112 (1997), doi:10.1126/science.276.5315.1109CrossRefGoogle Scholar
  87. Ruprecht, J.J., Mielke, T., Vogel, R., Villa, C., Schertler, G.F.: Electron crystallography reveals the structure of metarhodopsin I. Embo J. 23(18), 3609–3620 (2004), doi:10.1038/sj.emboj.7600374CrossRefGoogle Scholar
  88. Russel, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velazquez-Muriel, J.A., Sali, A.: The structural dynamics of macromolecular processes. Current Opinion in Cell Biology 21(1), 97–108 (2009), doi:10.1016/ Scholar
  89. Sansom, M.S., Scott, K.A., Bond, P.J.: Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem. Soc. Trans. 36(Pt. 1), 27–32 (2008), doi:10.1042/BST0360027CrossRefGoogle Scholar
  90. Saunders, M.G., Voth, G.A.: Coarse-graining of multiprotein assemblies. Current Opinion in Structural Biology 22(2), 144–150 (2012), doi:10.1016/ Scholar
  91. Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annual Review of Physical Chemistry 58, 57–83 (2007), doi:10.1146/annurev.physchem.58.032806.104614CrossRefGoogle Scholar
  92. Schlick, T., Collepardo-Guevara, R., Halvorsen, L.A., Jung, S., Xiao, X.: Biomolecularmodeling and simulation: a field coming of age. Q. Rev. Biophys. 44(2), 191–228 (2011), doi:10.1017/S0033583510000284CrossRefGoogle Scholar
  93. Schwaiger, I., Kardinal, A., Schleicher, M., Noegel, A.A., Rief, M.: A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 11(1), 81–85 (2004), doi:10.1038/nsmb705CrossRefGoogle Scholar
  94. Scott, K.A., Bond, P.J., Ivetac, A., Chetwynd, A.P., Khalid, S., Sansom, M.S.: Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16(4), 621–630 (2008), doi:10.1016/j.str.2008.01.014CrossRefGoogle Scholar
  95. Sen, T.Z., Kloster, M., Jernigan, R.L., Kolinski, A., Bujnicki, J.M., Kloczkowski, A.: Predicting the complex structure and functional motions of the outer membrane transporter and signal transducer FecA. Biophys. J. 94(7), 2482–2491 (2008), doi:10.1529/biophysj.107.116046CrossRefGoogle Scholar
  96. Sengupta, D., Marrink, S.J.: Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Phys. Chem. Chem. Phys. 12(40), 12987–12996 (2010), doi:10.1039/c0cp00101eCrossRefGoogle Scholar
  97. Serohijos, A.W., Chen, Y., Ding, F., Elston, T.C., Dokholyan, N.V.: A structural model reveals energy transduction in dynein. Proc. Natl. Acad. Sci. U S A 103(49), 18540–18545 (2006), doi:10.1073/pnas.0602867103CrossRefGoogle Scholar
  98. Shoemaker, B.A., Portman, J.J., Wolynes, P.G.: Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proceedings of the National Academy of Sciences 97(16), 8868–8873 (2000), doi:10.1073/pnas.160259697CrossRefGoogle Scholar
  99. Sieben, C., Kappel, C., Zhu, R., Wozniak, A., Rankl, C., Hinterdorfer, P., Grubmüller, H., Herrmann, A.: Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl. Acad. Sci. U S A 109(34), 13626–13631 (2012), doi:10.1073/pnas.1120265109CrossRefGoogle Scholar
  100. Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins 79(6), 1786–1799 (2011), doi:10.1002/prot.23001CrossRefGoogle Scholar
  101. Sikora, M., Sulkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the biomolecule stretching database. Nucleic Acids Res. 39(Database Issue), D443–D450 (2011), doi:10.1093/nar/gkq851Google Scholar
  102. Simmons, R.M., Finer, J.T., Chu, S., Spudich, J.A.: Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70(4), 1813–1822 (1996), doi:10.1016/S0006-3495(96)79746-1CrossRefGoogle Scholar
  103. Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250), 795–799 (1996), doi:10.1126/science.271.5250.795CrossRefGoogle Scholar
  104. Smith, S.O., Eilers, M., Song, D., Crocker, E., Ying, W., Groesbeek, M., Metz, G., Ziliox, M., Aimoto, S.: Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer. Biophys. J. 82(5), 2476–2486 (2002), doi:10.1016/S0006-3495(02)75590-2CrossRefGoogle Scholar
  105. Spijker, P., van Hoof, B., Debertrand, M., Markvoort, A.J., Vaidehi, N., Hilbers, P.A.: Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems. Int. J. Mol. Sci. 11(6), 2393–2420 (2010), doi:10.3390/ijms11062393CrossRefGoogle Scholar
  106. Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M., Shapiro, S.S.: Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell. Biol. 2(2), 138–145 (2001), doi:10.1038/35052082CrossRefGoogle Scholar
  107. Sulkowska, J.I., Cieplak, M.: Mechanical stretching of proteins - a theoretical survey of the Protein Data Bank. J. Phys.-Condens Mat. 19(28) (2007), doi:10.1088/0953-8984/19/28/283201Google Scholar
  108. Sulkowska, J.I., Sulkowski, P., Onuchic, J.N.: Jamming proteins with slipknots and their free energy landscape. Phys. Rev. Lett. 103(26), 268103 (2009), doi:10.1103/PhysRevLett.103.268103CrossRefGoogle Scholar
  109. Sulkowska, J.I., Sulkowski, P., Szymczak, P., Cieplak, M.: Untying knots in proteins. J. Am. Chem. Soc. 132(40), 13954–13956 (2010), doi:10.1021/ja102441zCrossRefGoogle Scholar
  110. Szilagyi, A., Gyorffy, D., Zavodszky, P.: The twilight zone between protein order and disorder. Biophys. J. 95(4), 1612–1626 (2008), doi:10.1529/biophysj.108.131151CrossRefGoogle Scholar
  111. Szymczak, P., Janovjak, H.: Periodic forces trigger a complex mechanical response in ubiquitin. J. Mol. Biol. 390(3), 443–456 (2009), doi:10.1016/j.jmb.2009.04.071CrossRefGoogle Scholar
  112. Takada, S.: Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22(2), 130–137 (2012), doi:10.1016/ Scholar
  113. Takagi, F., Koga, N., Takada, S.: How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations. Proc. Natl. Acad. Sci. USA 100(20), 11367–11372 (2003), doi:10.1073/pnas.1831920100CrossRefGoogle Scholar
  114. Taylor, W.R., Katsimitsoulia, Z.: A coarse-grained molecular model for actin-myosin simulation. J. Mol. Graph. Model. 29(2), 266–279 (2010), doi:10.1016/j.jmgm.2010.06.004MathSciNetCrossRefGoogle Scholar
  115. Turjanski, A.G., Gutkind, J.S., Best, R.B., Hummer, G.: Binding-Induced Folding of a Natively Unstructured Transcription Factor. PLoS Comput. Biol. 4(4), e1000060 (2008), doi:10.1371/journal.pcbi.1000060Google Scholar
  116. Uversky, V.N., Gillespie, J.R., Fink, A.L.: Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins: Structure, Function, and Bioinformatics 41(3), 415–427 (2000), doi:10.1002/1097-0134(20001115)41:3<415::aid-prot130>;2-7CrossRefGoogle Scholar
  117. Vajda, S., Kozakov, D.: Convergence and combination of methods in protein-protein docking. Curr. Opin. Struct. Biol. 19(2), 164–170 (2009), doi:10.1016/ Scholar
  118. Valbuena, A., Oroz, J., Hervas, R., Vera, A.M., Rodriguez, D., Menendez, M., Sulkowska, J.I., Cieplak, M., Carrion-Vazquez, M.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. U S A 106(33), 13791–13796 (2009), doi:10.1073/pnas.0813093106CrossRefGoogle Scholar
  119. Vendruscolo, M., Dobson, C.M.: Protein Dynamics: Moore’s Law in Molecular Biology. Curr. Biol. 21(2), R68–R70 (2011), doi:10.1016/j.cub.2010.11.062Google Scholar
  120. Verkhivker, G.M.: Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A–cyclin-dependent kinase 2 complex. Proteins: Structure, Function, and Bioinformatics 58(3), 706–716 (2005), doi:10.1002/prot.20351CrossRefGoogle Scholar
  121. Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., Rose, P.W.: Simulating disorder–order transitions in molecular recognition of unstructured proteins: Where folding meets binding. Proceedings of the National Academy of Sciences 100(9), 5148–5153 (2003), doi:10.1073/pnas.0531373100CrossRefGoogle Scholar
  122. Vogel, V., Sheetz, M.: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell. Biol. 7(4), 265–275 (2006), doi:10.1038/nrm1890CrossRefGoogle Scholar
  123. Wang, J., Wang, Y., Chu, X., Hagen, S.J., Han, W., Wang, E.: Multi-Scaled Explorations of Binding-Induced Folding of Intrinsically Disordered Protein Inhibitor IA3 to its Target Enzyme. PLoS Comput. Biol. 7(4), e1001118 (2011), doi:10.1371/journal.pcbi.1001118Google Scholar
  124. West, D.K., Olmsted, P.D., Paci, E.: Mechanical unfolding revisited through a simple but realistic model. J. Chem. Phys. 124(15) (2006), doi:10.1063/1.2185100Google Scholar
  125. Wolynes, P.G., Onuchic, J.N., Thirumalai, D.: Navigating the folding routes. Science 267(5204), 1619–1620 (1995), doi:10.1126/science.7886447CrossRefGoogle Scholar
  126. Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293(2), 321–331 (1999), doi:10.1006/jmbi.1999.3110CrossRefGoogle Scholar
  127. Wu, C., Shea, J.E.: Coarse-grained models for protein aggregation. Curr. Opin. Struct. Biol. 21(2), 209–220 (2011), doi:10.1016/ Scholar
  128. Yao, X.Q., Kenzaki, H., Murakami, S., Takada, S.: Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun. 1, 117 (2010), doi:10.1038/ncomms1116CrossRefGoogle Scholar
  129. Zhang, J., Muthukumar, M.: Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130(3), 035102 (2009), doi:10.1063/1.3050295CrossRefGoogle Scholar
  130. Zhmurov, A., Dima, R.I., Kholodov, Y., Barsegov, V.: Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins 78(14), 2984–2999 (2010), doi:10.1002/prot.22824CrossRefGoogle Scholar
  131. Zhou, H.-X.: Polymer Models of Protein Stability, Folding, and Interactions†. Biochemistry 43(8), 2141–2154 (2004), doi:10.1021/bi036269nCrossRefGoogle Scholar
  132. Zhou, H.X., Dill, K.A.: Stabilization of proteins in confined spaces. Biochemistry 40(38), 11289–11293 (2001), doi:10.3410/f.1002736.29765CrossRefGoogle Scholar
  133. Zhou, J., Thorpe, I.F., Izvekov, S., Voth, G.A.: Coarse-grained peptide modeling using a systematic multiscale approach. Biophys. J. 92(12), 4289–4303 (2007), doi:10.1529/biophysj.106.094425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sebastian Kmiecik
    • 1
  • Jacek Wabik
    • 1
  • Michal Kolinski
    • 2
  • Maksim Kouza
    • 1
  • Andrzej Kolinski
    • 1
  1. 1.Laboratory of Theory of Biopolymers, Faculty of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Bioinformatics LaboratoryMossakowski Medical Research Centre Polish Academy of SciencesWarsawPoland

Personalised recommendations