Coarse-Grained Protein Models in Structure Prediction

  • Maciej Blaszczyk
  • Dominik Gront
  • Sebastian Kmiecik
  • Katarzyna Ziolkowska
  • Marta Panek
  • Andrzej Kolinski
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)


The knowledge of the three-dimensional structure of proteins is crucial for understanding many important biological processes. Most biologically important proteins are too large to handle for the classical simulation tools. In such cases, coarse-grained (CG) models nowadays offer various opportunities for efficient conformational sampling and thus prediction of the three-dimensional structure. A variety of CG models have been proposed, each based on a similar framework consisting of a set of conceptual components such as protein representation, force field, sampling, etc. In this chapter we discuss these components, highlighting ideas which have proven to be the most successful. As CG methods are usually part of multistage procedures, we also describe approaches used for the incorporation of homology data and all-atom reconstruction methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abagyan, R.A., Mazur, A.K.: New methodology for computer-aided modelling of biomolecular structure and dynamics. 2. Local deformations and cycles. Journal of Biomolecular Structure & Dynamics 6(4), 833–845 (1989)CrossRefGoogle Scholar
  2. Adcock, S.A.: Peptide backbone reconstruction using dead-end elimination and a knowledge-based forcefield. Journal of Computational Chemistry 25(1), 16–27 (2004)CrossRefGoogle Scholar
  3. Altschul, M., Simpson, K.W., Dykes, N.L., Mauldin, E.A., Reubi, J.C., Cummings, J.F.: Evaluation of somatostatin analogues for the detection and treatment of gastrinoma in a dog. J. Small Anim. Pract. 38(7), 286–291 (1997a)CrossRefGoogle Scholar
  4. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997b)CrossRefGoogle Scholar
  5. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)CrossRefGoogle Scholar
  6. Anfinsen, C.B., Haber, E., Sela, M., White Jr., F.H.: The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U S A 47, 1309–1314 (1961)CrossRefGoogle Scholar
  7. Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10(12), 980 (2003)CrossRefGoogle Scholar
  8. Betancourt, M.: A reduced protein model with accurate native-structure identification ability. Proteins 53(4), 889–907 (2003)CrossRefGoogle Scholar
  9. Blundell, T., Carney, D., Gardner, S., Hayes, F., Howlin, B., Hubbard, T., Overington, J., Singh, D.A., Sibanda, B.L., Sutcliffe, M.: 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur. J. Biochem. 172(3), 513–520 (1988)CrossRefGoogle Scholar
  10. Boniecki, M., Rotkiewicz, P., Skolnick, J., Kolinski, A.: Protein fragment reconstruction using various modeling techniques. J. Comput. Aided Mol. Des. 17(11), 725–738 (2003)CrossRefGoogle Scholar
  11. Buchete, N.V., Straub, J.E., Thirumalai, D.: Orientation-dependent coarse-grained potentials derived by statistical analysis of molecular structural databases. Polymer 597–608 (2004)Google Scholar
  12. Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. Journal of Molecular Biology 281(3), 565–577 (1998)CrossRefGoogle Scholar
  13. Camproux, A.C., Gautier, R., Tuffery, P.: A hidden markov model derived structural alphabet for proteins. J. Mol. Biol. 339(3), 591–605 (2004)CrossRefGoogle Scholar
  14. Covell, D.G.: Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins 14(3), 409–420 (1992)CrossRefGoogle Scholar
  15. Czaplewski, C., Liwo, A., Makowski, M., Ołdziej, S., Scheraga, H.A.: Coarse-Grained Models of Proteins: Theory and Applications. In: Kolinski, A. (ed.) Multiscale Approaches to Protein Modeling, pp. 85–109. Springer, New York (2011)Google Scholar
  16. Czaplewski, C., Rodziewicz-Motowidlo, S., Liwo, A., Ripoll, D.R., Wawak, R.J., Scheraga, H.A.: Molecular simulation study of cooperativity in hydrophobic association. Protein Sci. 9(6), 1235–1245 (2000)CrossRefGoogle Scholar
  17. Dashevskii, V.G.: Lattice model for globular protein three-dimensional structure. Mol. Biol (Mosk) 14(1), 105–117 (1980)Google Scholar
  18. De Sancho, D., Rey, A.: Evaluation of coarse grained models for hydrogen bonds in proteins. J. Comput. Chem. (2007)Google Scholar
  19. Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A.: Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)CrossRefGoogle Scholar
  20. Ferrenberg, A., Landau, D.P., Swendsen, R.: Statistical errors in histogram reweighting. Physical Review E 51(5), 5092 (1995)CrossRefGoogle Scholar
  21. Ferrenberg, A., Swendsen, R.: Optimized Monte Carlo data analysis. Physical Review Letters 63(12), 1195–1198 (1989)CrossRefGoogle Scholar
  22. Gautier, R., Camproux, A.C., Tuffery, P.: SCit: web tools for protein side chain conformation analysis. Nucleic Acids Res. 32 (Web Server Issue), W508–W511 (2004)Google Scholar
  23. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of 23rd Symposium on the Interface Interface Foundation, Fairfax Station, pp. 156–163 (1991), doi:citeulike-article-id:606345Google Scholar
  24. Go, N., Scheraga, H.: Ring closure and local conformational deformations of chain molecules. Macromolecules 3, 178–187 (1970)CrossRefGoogle Scholar
  25. Go, N., Scheraga, H.A.: Ring-Closure in Chain Molecules with Cn,I, or S2n Symmetry. Macromolecules 6(2), 273–281 (1973)CrossRefGoogle Scholar
  26. Godzik, A., Kolinski, A., Skolnick, J.: Lattice representations of globular proteins: How good are they? Journal of Computational Chemistry 14(10), 1194–1202 (1993)CrossRefGoogle Scholar
  27. Grishaev, A., Bax, A.: An Empirical Backbone−Backbone Hydrogen-Bonding Potential in Proteins and Its Applications to NMR Structure Refinement and Validation. Journal of the American Chemical Society 126(23), 7281–7292 (2004)CrossRefGoogle Scholar
  28. Gront, D., Kmiecik, S., Blaszczyk, M., Ekonomiuk, D., Koliński, A.: Optimization of protein models. Wiley Interdisciplinary Reviews: Computational Molecular Science 2(3), 479–493 (2012)CrossRefGoogle Scholar
  29. Gront, D., Kmiecik, S., Kolinski, A.: Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J. Comput. Chem. 28(9), 1593–1597 (2007)CrossRefGoogle Scholar
  30. Gront, D., Kolinski, A., Skolnick, J.: Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: Folding thermodynamics and identification of low-energy structures. The Journal of Chemical Physics 113(12), 5065–5071 (2000)CrossRefGoogle Scholar
  31. Gront, D., Kolinski, A., Skolnick, J.: A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics. The Journal of Chemical Physics 115(3), 1569–1574 (2001)CrossRefGoogle Scholar
  32. Gront, D., Kulp, D., Vernon, R., Strauss, C., Baker, D.: Generalized fragment picking in rosetta: design, protocols and applications. PLoS ONE  6(8), e23294 (2011)Google Scholar
  33. Guardiani, C., Livi, R., Cecconi, F.: Coarse Grained Modeling and Approaches to Protein Folding. Curr. Bioinform. 5(3), 217–240 (2010)CrossRefGoogle Scholar
  34. Hansmann, U.: Parallel Tempering Algorithm for Conformational Studies of Biological Molecules. Chem. Phys. Lett. 281, 140–150 (1997)CrossRefGoogle Scholar
  35. Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins 68(3), 646–661 (2007)CrossRefGoogle Scholar
  36. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U S A 89(22), 10915–10919 (1992)CrossRefGoogle Scholar
  37. Hinds, D.A., Levitt, M.: A lattice model for protein structure prediction at low resolution. Proc. Natl. Acad. Sci. U S A 89(7), 2536–2540 (1992)CrossRefGoogle Scholar
  38. Holm, L., Sander, C.: Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J. Mol. Biol. 218(1), 183–194 (1991)CrossRefGoogle Scholar
  39. Illergard, K., Ardell, D.H., Elofsson, A.: Structure is three to ten times more conserved than sequence–a study of structural response in protein cores. Proteins 77(3), 499–508 (2009)CrossRefGoogle Scholar
  40. Irbäck, A., Mohanty, S.: PROFASI: A Monte Carlo simulation package for protein folding and aggregation. J. Comput. Chem. 27(13), 1548–1555 (2006)CrossRefGoogle Scholar
  41. Jamroz, M., Kolinski, A.: Modeling of loops in proteins: a multi-method approach. BMC Structural Biology 10(1), 5+ (2010)Google Scholar
  42. Jones, T.A., Thirup, S.: Using known substructures in protein model building and crystallography. EMBO J. 5(4), 819–822 (1986)Google Scholar
  43. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)CrossRefGoogle Scholar
  44. Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method. J. Comput. Chem. 23(7), 715–723 (2002)CrossRefGoogle Scholar
  45. Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Addition of side chains to a known backbone with defined side-chain centroids. Biophys. Chem. 100(1-3), 261–280 (2003)CrossRefGoogle Scholar
  46. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  47. Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica 51(2), 349–371 (2004)Google Scholar
  48. Kolinski, A., Betancourt, M.R., Kihara, D., Rotkiewicz, P., Skolnick, J.: Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins 44(2), 133–149 (2001)CrossRefGoogle Scholar
  49. Kolinski, A., Galazka, W., Skolnick, J.: Computer Design of Idealized Beta-Motifs. J. Chem. Phys. 103(23), 10286–10297 (1995a)CrossRefGoogle Scholar
  50. Kolinski, A., Gront, D.: Comparative modeling without implicit sequence alignments. Bioinformatics 23(19), 2522–2527 (2007)CrossRefGoogle Scholar
  51. Kolinski, A., Ilkowski, B., Skolnick, J.: Dynamics and thermodynamics of beta-hairpin assembly: Insights from various simulation techniques. Biophysical Journal 77(6), 2942–2952 (1999a)CrossRefGoogle Scholar
  52. Kolinski, A., Milik, M., Rycombel, J., Skolnick, J.: A Reduced Model of Short-Range Interactions in Polypeptide-Chains. J. Chem. Phys. 103(10), 4312–4323 (1995b)CrossRefGoogle Scholar
  53. Kolinski, A., Milik, M., Skolnick, J.: Static and Dynamic Properties of a New Lattice Model of Polypeptide-Chains. J. Chem. Phys. 94(5), 3978–3985 (1991)CrossRefGoogle Scholar
  54. Kolinski, A., Rotkiewicz, P., Ilkowski, B., Skolnick, J.: A method for the improvement of threading-based protein models. Proteins 37(4), 592–610 (1999b)CrossRefGoogle Scholar
  55. Kolinski, A., Skolnick, J.: Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18(4), 338–352 (1994)CrossRefGoogle Scholar
  56. Kolinski, A., Skolnick, J.: Lattice Models of Protein Folding, Dynamics and Thermodynamics. Landes (1996), doi:citeulike-article-id:877252Google Scholar
  57. Kolinski, A., Skolnick, J.: Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Proteins 32(4), 475–494 (1998)CrossRefGoogle Scholar
  58. Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004)CrossRefGoogle Scholar
  59. Kolinski, M., Filipek, S.: Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. J. Mol. Model. 16(10), 1567–1576 (2010)CrossRefGoogle Scholar
  60. Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326(4), 1239–1259 (2003)CrossRefGoogle Scholar
  61. Krigbaum, W.R., Lin, S.F.: Monte-Carlo Simulation of Protein Folding Using a Lattice Model. Macromolecules 15(4), 1135–1145 (1982)CrossRefGoogle Scholar
  62. Krivov, G.G., Shapovalov, M.V., Dunbrack Jr., R.L.: Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4), 778–795 (2009)CrossRefGoogle Scholar
  63. Kryshtafovych, A., Fidelis, K., Moult, J.: CASP9 results compared to those of previous CASP experiments. Proteins 79(suppl.10), 196–207 (2011)CrossRefGoogle Scholar
  64. Kumar, S., Rosenberg, J., Bouzida, D., Swendsen, R., Kollman, P.: Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 16(11), 1339–1350 (1995)CrossRefGoogle Scholar
  65. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)CrossRefGoogle Scholar
  66. Lee, J., Scheraga, H.A., Rackovsky, S.: New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. Journal of Computational Chemistry 18(9), 1222–1232 (1997)CrossRefGoogle Scholar
  67. Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. Journal of Molecular Biology 104(1), 59–107 (1976)CrossRefGoogle Scholar
  68. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975)CrossRefGoogle Scholar
  69. Levy-Moonshine, A., Amir, E.-A., Keasar, C.: Enhancement of beta-sheet assembly by cooperative hydrogen bonds potential. Bioinformatics 25(20), 2639–2645 (2009)CrossRefGoogle Scholar
  70. Li, Z., Scheraga, H.A.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. U S A 84(19), 6611–6615 (1987)MathSciNetCrossRefGoogle Scholar
  71. Liwo, A., Czaplewski, C., Ołdziej, S., Rojas, A., Kazmierkiewicz, R., Makowski, M., Murarka, R., Scheraga, H.: Simulation of Protein Structure and Dynamics with the Coarse-Grained UNRES Force Field. In: Coarse-Graining of Condensed Phase and Biomolecular Systems. CRC Press (2008), doi:citeulike-article-id:3822586Google Scholar
  72. Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.: Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. The Journal of Chemical Physics 115(5), 2323–2347 (2001)CrossRefGoogle Scholar
  73. Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(38), 16890–16901 (2011)CrossRefGoogle Scholar
  74. Liwo, A., Khalili, M., Scheraga, H.: Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America 102(7), 2362–2367 (2005)CrossRefGoogle Scholar
  75. Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S., Scheraga, H.A.: Prediction of protein conformation on the basis of a search for compact structures: test on avian pancreatic polypeptide. Protein Science: A Publication of the Protein Society 2(10), 1715–1731 (1993)CrossRefGoogle Scholar
  76. Maupetit, J., Gautier, R., Tuffery, P.: SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace. Nucleic Acids Res. 34 (Web Server Issue), W147–W151 (2006)Google Scholar
  77. Mazur, A.K., Dorofeev, V.E., Abagyan, R.A.: Derivation and testing of explicit equations of motion for polymers described by internal coordinates. Journal of Computational Physics 92(2), 261–272 (1991)zbMATHCrossRefGoogle Scholar
  78. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  79. Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American Statistical Association 44(247), 335–341 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  80. Milik, M., Kolinski, A., Skolnick, J.: Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates. Journal of Computational Chemistry 18(1), 80–85 (1997)CrossRefGoogle Scholar
  81. Morozov, A., Lin, S.: Accuracy and convergence of the Wang-Landau sampling algorithm. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 76(2) (2007)Google Scholar
  82. Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP)–round IX. Proteins 79(suppl.10), 1–5 (2011)CrossRefGoogle Scholar
  83. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249(2), 493–507 (1995)CrossRefGoogle Scholar
  84. Parsons, J., Holmes, B., Rojas, M., Tsai, J., Strauss, C.: Practical conversion from torsion space to Cartesian space forin silico protein synthesis. Journal of Computational Chemistry 26(10), 1063–1068 (2005)CrossRefGoogle Scholar
  85. Payne, P.W.: Reconstruction of Protein Conformations from Estimated Positions of the C-Alpha Coordinates. Protein Science 2(3), 315–324 (1993)CrossRefGoogle Scholar
  86. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35(Database Issue), D61–D65 (2007)Google Scholar
  87. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein Structure Prediction Using Rosetta. Numerical Computer Methods, Part D 383, 66–93 (2004), doi:citeulike-article-id:441859Google Scholar
  88. Rotkiewicz, P., Skolnick, J.: Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29(9), 1460–1465 (2008)CrossRefGoogle Scholar
  89. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993)CrossRefGoogle Scholar
  90. Shenoy, S.R., Jayaram, B.: Proteins: sequence to structure and function–current status. Curr. Protein Pept. Sci. 11(7), 498–514 (2010)CrossRefGoogle Scholar
  91. Shi, J., Blundell, T.L., Mizuguchi, K.: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310(1), 243–257 (2001)CrossRefGoogle Scholar
  92. Sippl, M.J.: Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7(4), 473–501 (1993)CrossRefGoogle Scholar
  93. Skolnick, J., Kolinski, A.: Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six-member, Greek key beta-barrel proteins. J. Mol. Biol. 212(4), 787–817 (1990a)CrossRefGoogle Scholar
  94. Skolnick, J., Kolinski, A.: Simulations of the folding of a globular protein. Science 250(4984), 1121–1125 (1990b)CrossRefGoogle Scholar
  95. Skolnick, J., Kolinski, A., Brooks III, C.L., Godzik, A., Rey, A.: 3rd, Godzik A, Rey A A method for predicting protein structure from sequence. Curr. Biol. 3(7), 414–423 (1993)CrossRefGoogle Scholar
  96. Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7), 951–960 (2005)CrossRefGoogle Scholar
  97. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314(1-2), 141–151 (1999)CrossRefGoogle Scholar
  98. Swendsen, R., Wang, J.: Replica Monte Carlo Simulation of Spin-Glasses. Physical Review Letters 57(21), 2607–2609 (1986)MathSciNetCrossRefGoogle Scholar
  99. Thompson, J., Baker, D.: Incorporation of evolutionary information into Rosetta comparative modeling. Proteins 79(8), 2380–2388 (2011)CrossRefGoogle Scholar
  100. Trojanowski, S., Rutkowska, A., Kolinski, A.: TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochimica Polonica 57(1), 125–133 (2010)Google Scholar
  101. Vendruscolo, M., Najmanovich, R., Domany, E.: Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38(2), 134–148 (2000)CrossRefGoogle Scholar
  102. Vinals, J., Kolinski, A., Skolnick, J.: Numerical study of the entropy loss of dimerization and the folding thermodynamics of the GCN4 leucine zipper. Biophys. J. 83(5), 2801–2811 (2002)CrossRefGoogle Scholar
  103. Voth, G. (ed.): Coarse-Graining of Condensed Phase and Biomolecular Systems. CRC Press Taylor & Francis, Farmington, CT (2008)Google Scholar
  104. Wales, D.: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Molecular Science). Cambridge University Press (2004), doi:citeulike-article-id:755112Google Scholar
  105. Wedemeyer, W.J., Scheraga, H.A.: Exact analytical loop closure in proteins using polynomial equations. Journal of Computational Chemistry 20(8), 819–844 (1999)CrossRefGoogle Scholar
  106. Xu, D., Zhang, J., Roy, A., Zhang, Y.: Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79(suppl.10), 147–160 (2011)CrossRefGoogle Scholar
  107. Zhang, J., He, Z., Wang, Q., Barz, B., Kosztin, I., Shang, Y., Xu, D.: Prediction of protein tertiary structures using MUFOLD. Methods Mol. Biol. 815, 3–13 (2012)CrossRefGoogle Scholar
  108. Zheng, W.: Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization. Biophys. J. 100(2), 478–488 (2011)CrossRefGoogle Scholar
  109. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11(11), 2714–2726 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maciej Blaszczyk
    • 1
  • Dominik Gront
    • 1
  • Sebastian Kmiecik
    • 1
  • Katarzyna Ziolkowska
    • 1
  • Marta Panek
    • 1
  • Andrzej Kolinski
    • 1
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations