Molecular Dynamics Studies on Amyloidogenic Proteins

  • Sylwia Rodziewicz-Motowidło
  • Emilia Sikorska
  • Justyna Iwaszkiewicz
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)

Abstract

Molecular dynamics simulations, coupled with experimental investigations, could improve our understanding of the protein aggregation and fibrillization process of amyloidogenic proteins. Computational tools are being applied to solve the protein aggregation and fibrillization problem, providing insight into amyloid structures and aggregation mechanisms. Experimental studies of the nature of protein aggregation are unfortunately limited by the structure of aggregates and their insolubility in water. The difficulties have stimulated the development of new experimental methods, and intensive efforts to match computational results with the results of experimental investigations. The number of papers published on simulations of amyloidogenic proteins has increased rapidly during the last decade. The simulation systems covered a range from simple peptides (Alzheimer Aβ peptides or peptides being fragments of amyloidogenic proteins), to large proteins (transthyretin, prion protein, cystatin C, β2-microglobulin etc.). In studies of aggregation, very important is the integration of experimental and computational methods. Computational simulations constitute an “analytical tool” for obtaining and processing biological information and to make useful explanations of the physicochemical principles of amyloidogenesis, as well as to understand the role of amino acid sequences in amyloidogenic proteins. Very efficient theoretical models for prediction of protein aggregation propensities from primary structures have been proposed. At a minimal computational cost, some of these models can determine putative, aggregationprone regions (“hot-spots”) within a protein sequence. The in silico simulations increase our understanding of the protein aggregation process. In this chapter, the molecular studies of amyloidogenic proteins like prion protein, transthyretin, and human cystatin C are presented. The MD studies of these proteins show the first steps during amyloids formation. In addition, in this chapter, the MD studies of protein fibrils are presented. Based on MD simulations of fibril models it is possible to interpret some experimental results and suggest a mechanism of elongation for the fibril protofilament formation.

Keywords

Prion Protein Salt Bridge Prion Disease Amyloid Fibril Fibril Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Virchow, R.: Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose. Acad. Sci. (Paris) 37, 860–861 (1854)Google Scholar
  2. 2.
    Gertz, M.A., Lacy, M.Q., Dispenzieri, A., Hayman, S.R.: Amyloidosis. Best Pract. Res. Clin. Haematol. 18, 709–727 (2005)Google Scholar
  3. 3.
    Hawkins, P.N.: Diagnosis and treatment of amyloidosis. Ann. Rheum. Dis. 56, 631–633 (1997)Google Scholar
  4. 4.
    Stryer, L., Berg, J.M.: Biochemistry 5e + Hemoglobin Chapter for Biochem 6e. W H Freeman & Company (2005)Google Scholar
  5. 5.
    Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W., Buxbaum, J.N.: Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA 101, 2817–2822 (2004)Google Scholar
  6. 6.
    Harper, J.D., Wong, S.S., Lieber, C.M., Lansbury, P.T.: Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997)Google Scholar
  7. 7.
    Krebs, M.R.H., Macphee, C.E., Miller, A.F., Dunlop, I.E., Dobson, C.M., Donald, A.M.: The formation of spherulites by amyloid fibrils of bovine insulin. Proc. Natl. Acad. Sci. USA 101, 14420–14424 (2004)Google Scholar
  8. 8.
    Gosal, W.S., Morten, I.J., Hewitt, E.W., Smith, D.A., Thomson, N.H., Radford, S.E.: Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. J. Mol. Biol. 351, 850–864 (2005)Google Scholar
  9. 9.
    Ionescu-Zanetti, C., Khurana, R., Gillespie, J.R., Petrick, J.S., Trabachino, L.C., Minert, L.J., Carter, S.A., Fink, A.L.: Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 13175–13179 (1999)Google Scholar
  10. 10.
    Malisauskas, M., Zamotin, V., Jass, J., Noppe, W., Dobson, C.M., Morozova-Roche, L.A.: Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration. J. Mol. Biol. 330, 879–890 (2003)Google Scholar
  11. 11.
    Wahlbom, M., Wang, X., Lindström, V., Carlemalm, E., Jaskolski, M., Grubb, A.: Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J. Biol. Chem. 282, 18318–18326 (2007)Google Scholar
  12. 12.
    Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabe, C.G.: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003)Google Scholar
  13. 13.
    Rousseau, F., Wilkinson, H., Villanueva, J., Serrano, L., Schymkowitz, J.W.H., Itzhaki, L.S.: Domain swapping in p13suc1 results in formation of native-like, cytotoxic aggregates. J. Mol. Biol. 363, 496–505 (2006)Google Scholar
  14. 14.
    Xu, S.: Aggregation drives “misfolding” in protein amyloid fiber formation. Amyloid. 14, 119–131 (2007)Google Scholar
  15. 15.
    Nguyen, H.D., Hall, C.K.: Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. J. Am. Chem. Soc. 128, 1890–1901 (2006)Google Scholar
  16. 16.
    Buchete, N.-V., Tycko, R., Hummer, G.: Molecular Dynamics Simulations of Alzheimer’s β-Amyloid Protofilaments. J. Mol. Biol. 353, 804–821 (2005)Google Scholar
  17. 17.
    Haspel, N., Zanuy, D., Ma, B., Wolfson, H., Nussinov, R.: A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core. J. Mol. Biol. 345, 1213–1227 (2005)Google Scholar
  18. 18.
    Röhrig, U.F., Laio, A., Tantalo, N., Parrinello, M., Petronzio, R.: Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer. Biophys. J. 91, 3217–3229 (2006)Google Scholar
  19. 19.
    Deng, N.-J., Yan, L., Singh, D., Cieplak, P.: Molecular Basis for the Cu2+ Binding-Induced Destabilization of β2-Microglobulin Revealed by Molecular Dynamics Simulation. Biophys. J. 90, 3865–3879 (2006)Google Scholar
  20. 20.
    Yang, M., Lei, M., Huo, S.: Why is Leu55→Pro55 transthyretin variant the most amyloidogenic: Insights from molecular dynamics simulations of transthyretin monomers. Protein Sci. 12, 1222–1231 (2003)Google Scholar
  21. 21.
    Park, S., Saven, J.G.: Simulation of pH-dependent edge strand rearrangement in human beta-2 microglobulin. Protein Sci. 15, 200–207 (2005)Google Scholar
  22. 22.
    Armen, R.S., Daggett, V.: Characterization of two distinct beta2-microglobulin unfolding intermediates that lead to amyloid fibrils of different morphology. Biochemistry 44, 16098–16107 (2005)Google Scholar
  23. 23.
    Santini, S., Derreumaux, P.: Helix H1 of the prion protein is rather stable against environmental perturbations: molecular dynamics of mutation and deletion variants of PrP(90-231). Cell Mol. Life Sci. 61, 951–960 (2004)Google Scholar
  24. 24.
    DeMarco, M.L., Daggett, V.: From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. USA 101, 2293–2298 (2004)Google Scholar
  25. 25.
    Rodziewicz-Motowidło, S., Wahlbom, M., Wang, X., Lagiewka, J., Janowski, R., Jaskolski, M., Grubb, A., Grzonka, Z.: Checking the conformational stability of cystatin C and its L68Q variant by molecular dynamics studies: why is the L68Q variant amyloidogenic? J. Struct. Biol. 154, 68–78 (2006)Google Scholar
  26. 26.
    DuBay, K.F.K., Pawar, A.P.A., Chiti, F.F., Zurdo, J.J., Dobson, C.M.C., Vendruscolo, M.M.: Prediction of the Absolute Aggregation Rates of Amyloidogenic Polypeptide Chains. J. Mol. Biol. 341, 10–10 (2004)Google Scholar
  27. 27.
    Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J., Serrano, L.: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004)Google Scholar
  28. 28.
    Tartaglia, G.G., Cavalli, A., Pellarin, R., Caflisch, A.: Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci. 14, 2723–2734 (2005)Google Scholar
  29. 29.
    Ma, B., Nussinov, R.: Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr. Opin. Chem. Biol. 10, 445–452 (2006)Google Scholar
  30. 30.
    Borreguero, J.M., Urbanc, B., Lazo, N.D., Buldyrev, S.V., Teplow, D.B., Stanley, H.E.: Folding events in the 21-30 region of amyloid beta-protein (Abeta) studied in silico. Proc. Natl. Acad. Sci. USA 102, 6015–6020 (2005)Google Scholar
  31. 31.
    Wei, G., Mousseau, N., Derreumaux, P.: Sampling the Self-Assembly Pathways of KFFE Hexamers. Biophys. J. 87, 3648–3656 (2004)Google Scholar
  32. 32.
    Baumketner, A., Shea, J.-E.: Free energy landscapes for amyloidogenic tetrapeptides dimerization. Biophys. J. 89, 1493–1503 (2005)Google Scholar
  33. 33.
    Han, W., Wu, Y.-D.: A strand-loop-strand structure is a possible intermediate in fibril elongation: long time simulations of amyloid-beta peptide (10-35). J. Am. Chem. Soc. 127, 15408–15416 (2005)Google Scholar
  34. 34.
    Ma, B., Nussinov, R.: Molecular dynamics simulations of the unfolding of 2-microglobulin and its variants. Protein Eng. Des. Sel. 16, 561–575 (2003)Google Scholar
  35. 35.
    Moraitakis, G., Goodfellow, J.M.: Simulations of Human Lysozyme: Probing the Conformations Triggering Amyloidosis. Biophys. J. 84, 2149–2158 (2003)Google Scholar
  36. 36.
    Tsai, H.-H.G., Reches, M., Tsai, C.-J., Gunasekaran, K., Gazit, E., Nussinov, R.: Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proc. Natl. Acad. Sci. USA 102, 8174–8179 (2005)Google Scholar
  37. 37.
    Wu, K.-P., Weinstock, D.S., Narayanan, C., Levy, R.M., Baum, J.: Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J. Mol. Biol. 391, 784–796 (2009)Google Scholar
  38. 38.
    Li, M.S., Klimov, D.K., Straub, J.E., Thirumalai, D.: Probing the mechanisms of fibril formation using lattice models. J. Chem. Phys. 129, 175101 (2008)Google Scholar
  39. 39.
    Zhang, J., Muthukumar, M.: Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130, 035102 (2009)Google Scholar
  40. 40.
    Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field. J. Mol. Biol. 404, 537–552 (2010)Google Scholar
  41. 41.
    Fawzi, N.L., Chubukov, V., Clark, L.A., Brown, S., Head-Gordon, T.: Influence of denatured and intermediate states of folding on protein aggregation. Protein Sci. 14, 993–1003 (2005)Google Scholar
  42. 42.
    Auer, S., Dobson, C.M., Vendruscolo, M.: Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J. 1, 137–146 (2007)Google Scholar
  43. 43.
    Smith, A.V., Hall, C.K.: Protein refolding Versus aggregation: computer simulations on an intermediate-resolution protein model. J. Mol. Biol. 312, 187–202 (2001)Google Scholar
  44. 44.
    Thirumalai, D., Klimov, D.K., Dima, R.I.: Emerging ideas on the molecular basis of protein and peptide aggregation. Curr. Opin. Struct. Biol. 13, 146–159 (2003)Google Scholar
  45. 45.
    Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Mol. Biol. 8, 316–320 (2001)Google Scholar
  46. 46.
    Bennett, M.J., Sawaya, M.R., Eisenberg, D.: Deposition diseases and 3D domain swapping. Structure 14, 811–824 (2006)Google Scholar
  47. 47.
    Armen, R.S., DeMarco, M.L., Alonso, D.O.V., Daggett, V.: Pauling and Corey’s alpha-pleated sheet structure define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc. Natl. Acad. Sci. USA 101, 11622–11627 (2004)Google Scholar
  48. 48.
    Ma, B., Nussinov, R.: The Stability of Monomeric Intermediates Controls Amyloid Formation: Aβ25-35 and its N27Q Mutant. Biophys. J. 90, 3365–3374 (2006)Google Scholar
  49. 49.
    Gu, W., Wang, T., Zhu, Y., Shi, J., Liu, H.: Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Biophys. Chem. 104, 79–94 (2003)Google Scholar
  50. 50.
    Alonso, D.O., Alm, E., Daggett, V.: Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: implications for domain swapping. Structure 8, 101–110 (2000)Google Scholar
  51. 51.
    Gsponer, J., Ferrara, P., Caflisch, A.: Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations. Journal of Molecular Graphics and Modelling 20, 169–182 (2001)Google Scholar
  52. 52.
    Alonso, D.O., DeArmond, S.J., Cohen, F.E., Daggett, V.: Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc. Natl. Acad. Sci. USA 98, 2985–2989 (2001)Google Scholar
  53. 53.
    Yang, M., Lei, M., Bruschweiler, R., Huo, S.: Initial Conformational Changes of Human Transthyretin under Partially Denaturing Conditions. Biophys. J. 89, 11 (2005)Google Scholar
  54. 54.
    Skoulakis, S., Goodfellow, J.M.: The pH-Dependent Stability of Wild-type and Mutant Transthyretin Oligomers. Biophys. J. 84, 2795–2804 (2003)Google Scholar
  55. 55.
    Mu, Y., Nordenskiöld, L., Tam, J.P.: Folding, Misfolding, and Amyloid Protofibril Formation of WW Domain FBP28. Biophys. J. 90, 3983–3992 (2006)Google Scholar
  56. 56.
    Nowak, M.: Immunoglobulin kappa light chain and its amyloidogenic mutants: a molecular dynamics study. Proteins 55, 11–21 (2004)Google Scholar
  57. 57.
    Prusiner, S.B.: Biology and Genetics of Prion Diseases. Annu. Rev. Microbiol. 48, 655–686 (1994)Google Scholar
  58. 58.
    Prusiner, S.B.: Neurodegenerative Diseases and Prions. N. Engl. J. Med. 344, 1516–1526 (2001)Google Scholar
  59. 59.
    Stahl, N., Prusiner, S.B.: Prions and prion protein. FASEB J. 5, 2799–2807 (1991)Google Scholar
  60. 60.
    Riesner, D.: Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 66, 21–33 (2003)Google Scholar
  61. 61.
    Zahn, R.: NMR solution structure of the human prion protein. Proceedings of the National Academy of Sciences 97, 145–150 (2000)Google Scholar
  62. 62.
    Cox, D.L., Lashuel, H., Lee, K.Y.C., Singh, R.R.P.: The Materials Science of Protein Aggregation. MRS Bulletin 30, 452–457 (2005)Google Scholar
  63. 63.
    Lansbury, P.T., Lashuel, H.A.: A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006)Google Scholar
  64. 64.
    Dima, R.I., Thirumalai, D.: Exploring the Propensities of Helices in PrPC to Form β Sheet Using NMR Structures and Sequence Alignments. Biophys. J. 83, 1268–1280 (2002)Google Scholar
  65. 65.
    Lu, X., Wintrode, P.L., Surewicz, W.K.: Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc. Natl. Acad. Sci. USA 104, 1510–1515 (2007)Google Scholar
  66. 66.
    Cohen, F.E., Pan, K.M., Huang, Z., Baldwin, M., Fletterick, R.J., Prusiner, S.B.: Structural clues to prion replication. Science 264, 530–531 (1994)Google Scholar
  67. 67.
    Dima, R.I., Thirumalai, D.: Probing the instabilities in the dynamics of helical fragments from mouse PrPC. Proc. Natl. Acad. Sci. USA 101, 15335–15340 (2004)Google Scholar
  68. 68.
    Kunes, K.C., Clark, S.C., Cox, D.L., Singh, R.R.P.: Left handed beta helix models for mammalian prion fibrils. Prion 2, 81–90 (2008)Google Scholar
  69. 69.
    Cobb, N.J., Apetri, A.C., Surewicz, W.K.: Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J. Biol. Chem. 283, 34704–34711 (2008)Google Scholar
  70. 70.
    Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendheim, P.E., Groth, D.F., Glenner, G.G.: Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983)Google Scholar
  71. 71.
    El-Bastawissy, E., Knaggs, M.H., Gilbert, I.H.: Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. Journal of Molecular Graphics and Modelling 20, 145–154 (2001)Google Scholar
  72. 72.
    Parchment, O.G., Essex, J.W.: Molecular dynamics of mouse and Syrian hamster PrP: implications for activity. Proteins 38, 327–340 (2000)Google Scholar
  73. 73.
    Zuegg, J., Gready, J.E.: Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Biochemistry 38, 13862–13876 (1999)Google Scholar
  74. 74.
    Hornemann, S., Glockshuber, R.: A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc. Natl. Acad. Sci. USA 95, 6010–6014 (1998)Google Scholar
  75. 75.
    Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P., Surewicz, W.K.: Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 39, 424–431 (2000)Google Scholar
  76. 76.
    Swietnicki, W., Petersen, R., Gambetti, P., Surewicz, W.K.: pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J. Biol. Chem. 272, 27517–27520 (1997)Google Scholar
  77. 77.
    Zhang, H., Stockel, J., Mehlhorn, I., Groth, D., Baldwin, M.A., Prusiner, S.B., James, T.L., Cohen, F.E.: Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36, 3543–3553 (1997)Google Scholar
  78. 78.
    Jackson, G.S., Hosszu, L.L., Power, A., Hill, A.F., Kenney, J., Saibil, H., Craven, C.J., Waltho, J.P., Clarke, A.R., Collinge, J.: Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999)Google Scholar
  79. 79.
    Guo, J., Ren, H., Ning, L., Liu, H., Yao, X.: Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. J. Struct. Biol. 178, 225–232 (2012)Google Scholar
  80. 80.
    Collinge, J.: Prion diseases of humans and animals: their causes and molecular basis. Annual Review of Neuroscience 24, 519–550 (2001)Google Scholar
  81. 81.
    Mead, S.: Prion disease genetics. Eur. J. Hum. Genet. 14, 273–281 (2006)Google Scholar
  82. 82.
    van der Kamp, M.W., Daggett, V.: The consequences of pathogenic mutations to the human prion protein. Protein Eng. Des. Sel. 22, 461–468 (2009)Google Scholar
  83. 83.
    Rossetti, G., Cong, X., Caliandro, R., Legname, G., Carloni, P.: Common Structural Traits across Pathogenic Mutants of the Human Prion Protein and Their Implications for Familial Prion Diseases. J. Mol. Biol. 411, 700–712 (2011)Google Scholar
  84. 84.
    Hamilton, J.A., Steinrauf, L.K., Braden, B.C., Liepnieks, J., Benson, M.D., Holmgren, G., Sandgren, O., Steen, L.: The x-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30–>Met variant to 1.7-A resolution. J. Biol. Chem. 268, 2416–2424 (1993)Google Scholar
  85. 85.
    Sebastião, M.P., Saraiva, M.J., Damas, A.M.: The crystal structure of amyloidogenic Leu55 –> Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils. J. Biol. Chem. 273, 24715–24722 (1998)Google Scholar
  86. 86.
    Cendron, L., Trovato, A., Seno, F., Folli, C., Alfieri, B., Zanotti, G., Berni, R.: Amyloidogenic potential of transthyretin variants: insights from structural and computational analyses. J. Biol. Chem. 284, 25832–25841 (2009)Google Scholar
  87. 87.
    Hammarström, P.: Trans-Suppression of Misfolding in an Amyloid Disease. Science 293, 2459–2462 (2001)Google Scholar
  88. 88.
    Hammarström, P., Jiang, X., Hurshman, A.R., Powers, E.T., Kelly, J.W.: Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity. Proc. Natl. Acad. Sci. USA 99(suppl. 4), 16427–16432 (2002)Google Scholar
  89. 89.
    Schneider, F., Hammarström, P., Kelly, J.W.: Transthyretin slowly exchanges subunits under physiological conditions: A convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 10, 1606–1613 (2001)Google Scholar
  90. 90.
    Hurshman, A.R., White, J.T., Powers, E.T., Kelly, J.W.: Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43, 7365–7381 (2004)Google Scholar
  91. 91.
    Jiang, X., Smith, C.S., Petrassi, H.M., Hammarström, P., White, J.T., Sacchettini, J.C., Kelly, J.W.: An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001)Google Scholar
  92. 92.
    Armen, R.S., Alonso, D.O.V., Daggett, V.: Anatomy of an Amyloidogenic Intermediate - Conversion of β-Sheet to α-Sheet Structure in Transthyretin at Acidic pH. Structure 12, 1847–1863 (2004)Google Scholar
  93. 93.
    Liu, K., Cho, H.S., Hoyt, D.W., Nguyen, T.N., Olds, P., Kelly, J.W., Wemmer, D.E.: Deuterium-proton exchange on the native wild-type transthyretin tetramer identifies the stable core of the individual subunits and indicates mobility at the subunit interface. J. Mol. Biol. 303, 555–565 (2000)Google Scholar
  94. 94.
    Saraiva, M.J.: Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum. Mutat. 17, 493–503 (2001)Google Scholar
  95. 95.
    Lashuel, H.A., Lai, Z., Kelly, J.W.: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864 (1998)Google Scholar
  96. 96.
    Hörnberg, A., Eneqvist, T., Olofsson, A., Lundgren, E., Sauer-Eriksson, A.E.: A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J. Mol. Biol. 302, 649–669 (2000)Google Scholar
  97. 97.
    Wojtczak, A., Neumann, P., Cody, V.: Structure of a new polymorphic monoclinic form of human transthyretin at 3 A resolution reveals a mixed complex between unliganded and T4-bound tetramers of TTR. Acta Crystallogr. D Biol. Crystallogr. 57, 957–967 (2001)Google Scholar
  98. 98.
    Hörnberg, A., Olofsson, A., Eneqvist, T., Lundgren, E., Sauer-Eriksson, A.E.: The beta-strand D of transthyretin trapped in two discrete conformations. Biochim. Biophys. Acta 1700, 93–104 (2004)Google Scholar
  99. 99.
    Banerjee, A., Bairagya, H.R., Mukhopadhyay, B.P.B., Nandi, T.K., Bera, A.K.: Structural insight to mutated Y116S transthyretin by molecular dynamics simulation. Indian J. Biochem. Biophys. 47, 197–202 (2010)Google Scholar
  100. 100.
    Xu, X., Wang, X., Xiao, Z., Li, Y., Wang, Y.: Probing the structural and functional link between mutation- and pH-dependent hydration dynamics and amyloidosis of transthyretin. Soft Matter 8, 324–336 (2011)Google Scholar
  101. 101.
    Abrahamson, M., Barrett, A.J., Salvesen, G., Grubb, A.: Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11282–11289 (1986)Google Scholar
  102. 102.
    Grubb, A.O.: Cystatin C-Properties and use as diagnostic marker. In: Advances in Clinical Chemistry, pp. 63–99. Elsevier (2001)Google Scholar
  103. 103.
    Grzonka, Z., Jankowska, E., Kasprzykowski, F., et al.: Structural studies of cysteine proteases and their inhibitors. Acta Biochim. Pol. 48, 1–20 (2001)Google Scholar
  104. 104.
    Ghiso, J., Jensson, O., Frangione, B.: Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc. Natl. Acad. Sci. USA 83, 2974–2978 (1986)Google Scholar
  105. 105.
    Abrahamson, M.: Molecular basis for amyloidosis related to hereditary brain hemorrhage. Scand. J. Clin. Lab. Invest. Suppl. 226, 47–56 (1996)Google Scholar
  106. 106.
    Olafsson, I., Grubb, A.O.: Hereditary cystatin C amyloid angiopathy. Amyloid 7, 70–79 (2000)Google Scholar
  107. 107.
    Gerhartz, B., Ekiel, I., Abrahamson, M.: Two stable unfolding intermediates of the disease-causing L68Q variant of human cystatin C. Biochemistry 37, 17309–17317 (1998)Google Scholar
  108. 108.
    Abrahamson, M., Grubb, A.: Increased body temperature accelerates aggregation of the Leu-68–>Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc. Natl. Acad. Sci. USA 91, 1416–1420 (1994)Google Scholar
  109. 109.
    Jankowska, E., Wiczk, W., Grzonka, Z.: Thermal and guanidine hydrochloride-induced denaturation of human cystatin C. Eur. Biophys. J. 33, 454–461 (2004)Google Scholar
  110. 110.
    Nilsson, M., Wang, X., Rodziewicz-Motowidlo, S., Janowski, R., Lindström, V., Onnerfjord, P., Westermark, G., Grzonka, Z., Jaskolski, M.M., Grubb, A.A.: Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J. Biol. Chem. 279, 24236–24245 (2004)Google Scholar
  111. 111.
    Liu, H.-L., Lin, Y.-M., Zhao, J.-H., Hsieh, M.-C., Lin, H.-Y., Huang, C.-H., Fang, H.-W., Ho, Y., Chen, W.-Y.: Molecular dynamics simulations of human cystatin C and its L68Q varient to investigate the domain swapping mechanism. J. Biomol. Struct. Dyn. 25, 135–144 (2007)Google Scholar
  112. 112.
    Lin, Y.-M., Liu, H.-L., Zhao, J.-H., Huang, C.-H., Fang, H.-W., Ho, Y., Chen, W.-Y.: Molecular Dynamics Simulations to Investigate the Domain Swapping Mechanism of Human Cystatin C. Biotechnol. Progress 23, 577–584 (2008)Google Scholar
  113. 113.
    Yu, Y., Wang, Y., He, J., Liu, Y., Li, H., Zhang, H., Song, Y.: Structural and dynamic properties of a new amyloidogenic chicken cystatin mutant I108T. J. Biomol. Struct. Dyn. 27, 641–649 (2010)Google Scholar
  114. 114.
    Ekiel, I., Abrahamson, M., Fulton, D.B., et al.: NMR structural studies of human cystatin C dimers and monomers. J. Mol. Biol. 271, 266–277 (1997)Google Scholar
  115. 115.
    Sinha, N., Tsai, C.J., Nussinov, R.: A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. Protein Eng. 14, 93–103 (2001)Google Scholar
  116. 116.
    Staniforth, R.A., Giannini, S., Higgins, L.D., Conroy, M.J., Hounslow, A.M., Jerala, R., Craven, C.J., Waltho, J.P.: Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774–4781 (2001)Google Scholar
  117. 117.
    Stubbs, M.T., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., Turk, V.: The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9, 1939–1947 (1990)Google Scholar
  118. 118.
    Engh, R.A., Dieckmann, T., Bode, W., Auerswald, E.A., Turk, V., Huber, R., Oschkinat, H.: Conformational variability of chicken cystatin. Comparison of structures determined by X-ray diffraction and NMR spectroscopy. J. Mol. Biol. 234, 1060–1069 (1993)Google Scholar
  119. 119.
    Rodziewicz-Motowidło, S., Iwaszkiewicz, J., Sosnowska, R., Czaplewska, P., Sobolewski, E., Szymańska, A., Stachowiak, K., Liwo, A.: The role of the Val57 amino-acid residue in the hinge loop of the human cystatin C. Conformational studies of the beta2-L1-beta3 segments of wild-type human cystatin C and its mutants. Biopolymers 91, 373–383 (2009)Google Scholar
  120. 120.
    Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., Blake, C.C.: Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997)Google Scholar
  121. 121.
    Blake, C., Serpell, L.: Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 989–998 (1996)Google Scholar
  122. 122.
    Cohen, A.S., Shirahama, T., Skinner, M.: Electron microscopy of amyloid. Electron Microscopy of Proteins 3, 165–205 (1982)Google Scholar
  123. 123.
    Puchtler, H., Sweat, F.: Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 13, 693–694 (1965)Google Scholar
  124. 124.
    Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)Google Scholar
  125. 125.
    Serpell, L.C., Sunde, M., Benson, M.D., Tennent, G.A., Pepys, M.B., Fraser, P.E.: The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300, 1033–1039 (2000)Google Scholar
  126. 126.
    Nelson, R., Eisenberg, D.: Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16, 260–265 (2006)Google Scholar
  127. 127.
    Jiménez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., Saibil, H.R.: Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999)Google Scholar
  128. 128.
    Govaerts, C., Wille, H., Prusiner, S.B., Cohen, F.E.: Evidence for assembly of prions with left-handed beta-helices into trimers. Proc. Natl. Acad. Sci. USA 101, 8342–8347 (2004)Google Scholar
  129. 129.
    Sikorski, P., Atkins, E.: New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6, 425–432 (2005)Google Scholar
  130. 130.
    Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R.: 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342–17347 (2005)Google Scholar
  131. 131.
    Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L., Yeates, T.O.: Arrangement of subunits and ordering of beta-strands in an amyloid sheet. Nat. Struct. Biol. 9, 734–739 (2002)Google Scholar
  132. 132.
    Ivanova, M.I., Sawaya, M.R., Gingery, M., Attinger, A., Eisenberg, D.: An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc. Natl. Acad. Sci. USA 101, 10584–10589 (2004)Google Scholar
  133. 133.
    Gronenborn, A.M.: Protein acrobatics in pairs—dimerization via domain swapping. Curr. Opin. Struct. Biol. 19, 39–49 (2009)Google Scholar
  134. 134.
    la Paz de, M.L., de Mori, G.M.S., Serrano, L., Colombo, G.: Sequence Dependence of Amyloid Fibril Formation: Insights from Molecular Dynamics Simulations. J. Mol. Biol. 349, 583–596 (2005)Google Scholar
  135. 135.
    Li, L., Darden, T.A., Bartolotti, L., Kominos, D., Pedersen, L.G.: An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys. J. 76, 2871–2878 (1999)Google Scholar
  136. 136.
    Zanuy, D., Nussinov, R.: The Sequence Dependence of Fiber Organization. A Comparative Molecular Dynamics Study of the Islet Amyloid Polypeptide Segments 22-27 and 22-29. J. Mol. Biol. 329, 565–584 (2003)Google Scholar
  137. 137.
    Tsai, H.H., Zanuy, D., Haspel, N., Gunasekaran, K., Ma, B., Tsai, C.J., Nussinov, R.: The stability and dynamics of the human calcitonin amyloid peptide DFNKF. Biophys. J. 87, 146–158 (2004)Google Scholar
  138. 138.
    Ye, W., Chen, Y., Wang, W., Yu, Q., Li, Y., Zhang, J., Chen, H.-F.: Insight into the stability of cross-β amyloid fibril from VEALYL short peptide with molecular dynamics simulation. PLoS ONE 7, e36382 (2012)Google Scholar
  139. 139.
    Periole, X., Rampioni, A., Vendruscolo, M., Mark, A.E.: Factors That Affect the Degree of Twist in beta-Sheet Structures: A Molecular Dynamics Simulation Study of a Cross-beta Filament of the GNNQQNY Peptide. J. Phys. Chem. B 113, 1728–1737 (2009)Google Scholar
  140. 140.
    Song, W., Wei, G., Mousseau, N., Derreumaux, P.: Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species. J. Phys. Chem. B 112, 4410–4418 (2008)Google Scholar
  141. 141.
    Berryman, J.T., Radford, S.E., Harris, S.A.: Systematic Examination of Polymorphism in Amyloid Fibrils by Molecular-Dynamics Simulation. Biophys. J. 100, 2234–2242 (2011)Google Scholar
  142. 142.
    Connelly, L., Jang, H., Arce, F.T., Capone, R., Kotler, S.A., Ramachandran, S., Kagan, B.L., Nussinov, R., Lal, R.: Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-d-Enantiomer of Alzheimer’s β-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology. J. Phys. Chem. B 116, 1728–1735 (2012)Google Scholar
  143. 143.
    Kent, A., Jha, A.K., Fitzgerald, J.E., Freed, K.F.: Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment. J. Phys. Chem. B 112, 6175–6186 (2008)Google Scholar
  144. 144.
    Zheng, J., Jang, H., Nussinov, R.: Beta2-microglobulin amyloid fragment organization and morphology and its comparison to Abeta suggests that amyloid aggregation pathways are sequence specific. Biochemistry 47, 2497–2509 (2008)Google Scholar
  145. 145.
    Wang, J., Tan, C., Chen, H.-F., Luo, R.: All-Atom Computer Simulations of Amyloid Fibrils Disaggregation. Biophys. J. 95, 5037–5047 (2008)Google Scholar
  146. 146.
    Gnanakaran, S., Nussinov, R., García, A.E.: Atomic-level description of amyloid beta-dimer formation. J. Am. Chem. Soc. 128, 2158–2159 (2006)Google Scholar
  147. 147.
    Boucher, G., Mousseau, N., Derreumaux, P.: Aggregating the amyloid Abeta(11-25) peptide into a four-stranded beta-sheet structure. Proteins 65, 877–888 (2006)Google Scholar
  148. 148.
    Lipfert, J., Franklin, J., Wu, F., Doniach, S.: Protein Misfolding and Amyloid Formation for the Peptide GNNQQNY from Yeast Prion Protein Sup35: Simulation by Reaction Path Annealing. J. Mol. Biol. 349, 648–658 (2005)Google Scholar
  149. 149.
    Soto, P., Cladera, J., Mark, A.E., Daura, X.: Stability of SIV gp32 Fusion-Peptide Single-Layer Protofibrils as Monitored by Molecular-Dynamics Simulations. Angew Chem. 117, 1089–1091 (2005)Google Scholar
  150. 150.
    Correia, B.E., Loureiro-Ferreira, N., Rodrigues, J.R., Brito, R.M.M.: A structural model of an amyloid protofilament of transthyretin. Protein Sci. 15, 28–32 (2005)Google Scholar
  151. 151.
    Colombo, G., Meli, M., De Simone, A.: Computational studies of the structure, dynamics and native content of amyloid- like fibrils of ribonuclease A. Proteins 70, 863–872 (2007)Google Scholar
  152. 152.
    Gohlke, H., Kiel, C., Case, D.A.: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol. Biol. 330, 891–913 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylwia Rodziewicz-Motowidło
    • 1
  • Emilia Sikorska
    • 1
  • Justyna Iwaszkiewicz
    • 2
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Swiss Institute of Bioinformatics, Molecular Modeling GroupBâtiment Genopode, Quartier SorgeLausanneSwitzerland

Personalised recommendations