Simulations of the Folding of Proteins: A Historical Perspective

Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)

Abstract

Highlights of the evolutionary development of the physical approach to biology during the last 80 years are traced in this chapter. The historical sequence of events that led to the introduction of modern simulation methods to treat biological processes is described in detail.

Keywords

Molecular Dynamic Polypeptide Chain Nucleotide Binding Domain Substrate Binding Domain Replica Exchange Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn, E.J., Edsall, J.T.: Proteins, Amino Acids and Peptides as Ions and Dipolar Ions. Reinhold publishers, New York (1943)Google Scholar
  2. 2.
    Linderstrøm-Lang, K.U.: On the ionisation state of proteins. Compt. Rend. Trav. Lab., Carlsberg 15, 1–29 (1924)Google Scholar
  3. 3.
    Debye, P., Hückel, E.: Zur Theorie der Electrolyte. Phys. Zeit. 24, 185–206 (1923)MATHGoogle Scholar
  4. 4.
    Svedberg, T., Pederson, K.O.: The Ultracentrifuge. Clarendon Press, Oxford (1940)Google Scholar
  5. 5.
    Neurath, H., Saum, A.M.: The denaturation of serum albumin: Diffusion and viscosity measurements of serum albumin in the presence of urea. J. Biol. Chem. 128, 347–362 (1939)Google Scholar
  6. 6.
    Oncley, J.L.: Evidence from physical chemistry regarding the size and shape of protein molecules from ultra-centrifugation, diffusion, viscosity, dielectric dispersion, and double refraction of flow. Annals, N.Y. Acad. of Sci. 41, 121–150 (1941)CrossRefGoogle Scholar
  7. 7.
    Edsall, J.T.: On the laboratory that produced the book, Proteins, Amino Acids and Peptides. AICHE Journal 44, 949–953 (1995)CrossRefGoogle Scholar
  8. 8.
    Anfinsen, C.B.: Principles that govern the Folding of Protein Chains. Science 181, 223–230 (1973)CrossRefGoogle Scholar
  9. 9.
    Scheraga, H.A., Edsall, J.T., Gadd Jr., J.O.: Double refraction of flow: Numerical evaluation of extinction angle and birefringence as a function of velocity gradient. J. Chem. Phys. 19, 1101–1108 (1951)CrossRefGoogle Scholar
  10. 10.
    Scheraga, H.A., Mandelkern, L.: Consideration of the hydrodynamic properties of proteins. J. Am. Chem. Soc. 75, 179–184 (1953)CrossRefGoogle Scholar
  11. 11.
    Flory, P.J., Fox Jr., T.G.: Treatment of intrinsic viscosities. J. Am. Chem. Soc. 73, 1904–1908 (1951)CrossRefGoogle Scholar
  12. 12.
    Mandelkern, L., Krigbaum, W.R., Scheraga, H.A., Flory, P.J.: Sedimentation behavior of flexible chain molecules: polyisobutylene. J. Chem. Phys. 20, 1392–1397 (1952)CrossRefGoogle Scholar
  13. 13.
    Pauling, L., Corey, R.B., Brauson, H.R.: The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951)CrossRefGoogle Scholar
  14. 14.
    Pauling, L., Corey, R.B.: Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proc. Natl. Acad. Sci. USA 37, 729–740 (1951)CrossRefGoogle Scholar
  15. 15.
    Sanger, F.: The arrangement of amino acids in proteins. Adv. Protein Chem. 7, 1–66 (1952)CrossRefGoogle Scholar
  16. 16.
    Ryle, A., Sanger, F., Smith, I.F., Kitai, R.: The disulfide bonds of insulin. Biochem. J. 60, 542–556 (1955)Google Scholar
  17. 17.
    Perutz, M.F., Rossman, M.G., Cullis, A.F., Muirhead, H., Will, G., North, A.C.T.: Structure of Haemoglobin, A three-dimensional Fourier synthesis at 5.5 Å resolution, obtained by x-ray analysis. Nature 185, 416–422 (1960)CrossRefGoogle Scholar
  18. 18.
    Kendrew, J.C., Dickerson, R.E., Strandberg, B.E., Hart, R.G., Davies, D.R., Philips, D.C., Shore, V.C.: Structure of myoglobin, A three-dimensional Fourier synthesis at 2 Å resolution. Nature 185, 422–427 (1960)CrossRefGoogle Scholar
  19. 19.
    Laskowski Jr., M., Scheraga, H.A.: Thermodynamic considerations of protein reactions. I. Modified reactivity of polar groups. J. Am. Chem. Soc. 76, 6305–6319 (1954)CrossRefGoogle Scholar
  20. 20.
    Laskowski Jr., M., Scheraga, H.A.: Thermodynamic considerations of protein reactions. II. Modified reactivity of primary valence bonds. J. Am. Chem. Soc. 78, 5793–5798 (1956)CrossRefGoogle Scholar
  21. 21.
    Némethy, G., Scheraga, H.A.: The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773–1789 (1962); Erratum: J. Phys. Chem. 67, 2888 (1963)Google Scholar
  22. 22.
    Griffith, J.H., Scheraga, H.A.: Statistical thermodynamics of aqueous solutions. I. Water structure, solutions with non-polar solutes, and hydrophobic interactions. J. Molec. Str. 682, 97–113 (2004)Google Scholar
  23. 23.
    Owicki, J.C., Scheraga, H.A.: Monte Carlo calculations in the isothermal isobaric ensemble. 2. Dilute aqueous solution of methane. J. Am. Chem. Soc. 99, 7413–7418 (1977)CrossRefGoogle Scholar
  24. 24.
    Rapaport, D.C., Scheraga, H.A.: Hydration of inert solutes. A molecular dynamics study. J. Phys. Chem. 86, 873–880 (1982)CrossRefGoogle Scholar
  25. 25.
    Kendrew, J.C.: The structure of globular proteins. Comp. Biochem. Physiol. 4, 249–252 (1962)CrossRefGoogle Scholar
  26. 26.
    Scheraga, H.A.: Theory of hydrophobic interactions. J. Biomolec. Structure and Dynamics 16, 447–460 (1998)CrossRefGoogle Scholar
  27. 27.
    Sturtevant, J.M., Laskowski Jr., M., Donnelly, T.H., Scheraga, H.A.: Equilibria in the fibrinogen-fibrin conversion. III. Heats of polymerization and clotting of fibrin monomer. J. Am. Chem. Soc. 77, 6168–6172 (1955)CrossRefGoogle Scholar
  28. 28.
    Scheraga, H.A.: Structural studies of pancreatic ribonuclease. Fed. Proc. 26, 1380–1387 (1967)Google Scholar
  29. 29.
    Wlodawer, A., Svensson, L.A., Sjölin, L., Gilliland, G.L.: Structure of phosphate-free ribonuclease A refined at 1.26Å. Biochemistry 27, 2705–2717 (1988)CrossRefGoogle Scholar
  30. 30.
    Némethy, G., Scheraga, H.A.: Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers 3, 155–184 (1965)CrossRefGoogle Scholar
  31. 31.
    Scheraga, H.A.: Calculations of conformations of polypeptides. Adv. Phys. Org. Chem. 6, 103–184 (1968)CrossRefGoogle Scholar
  32. 32.
    Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V.: Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963)CrossRefGoogle Scholar
  33. 33.
    Scheraga, H.A., Leach, S.J., Scott, R.A., Némethy, G.: Intramolecular forces and protein conformation. Disc Faraday Soc. 40, 268–277 (1965)CrossRefGoogle Scholar
  34. 34.
    Némethy, G., Leach, S.J., Scheraga, H.A.: The influence of amino acid side chains on the free energy of helix coil transitions. J. Phys. Chem. 70, 998–1004 (1966)CrossRefGoogle Scholar
  35. 35.
    Leach, S.J., Némethy, G., Scheraga, H.A.: Computation of the sterically allowed conformations of peptides. Biopolymers 4, 369–407 (1966)CrossRefGoogle Scholar
  36. 36.
    de Santis, P., Giglio, E., Liquori, A.M., Ripamonti, A.: Stability of helical conformations of simple linear polymers. J. Polym. Sci. Part A 1, 1383–1404 (1963)Google Scholar
  37. 37.
    Brant, D.A., Flory, P.J.: The configuration of random polypeptide chains. II. Theory. J. Am. Chem. Soc. 87, 2791–2800 (1965)CrossRefGoogle Scholar
  38. 38.
    Ooi, T., Scott, R.A., Vanderkooi, G., Scheraga, H.A.: Conformational analysis of macromolecules. IV. Helical structures of poly-L-alanine, poly-L-valine, poly-β-methyl L-aspartate, poly-γ-methyl-L-glutamate, and poly-L-tyrosine. J. Chem. Phys. 46, 4410–4426 (1967)CrossRefGoogle Scholar
  39. 39.
    Gibson, K.D., Scheraga, H.A.: Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin and an octapeptide from ribonuclease. Proc. Natl. Acad. Sci. USA 58, 1317–1323 (1967)CrossRefGoogle Scholar
  40. 40.
    Gibson, K.D., Scheraga, H.A.: Minimization of polypeptide energy. VII. Second derivatives and statistical weights of energy minima for deca L alanine. Proc. Natl. Acad. Sci. USA 63, 242–245 (1969)CrossRefGoogle Scholar
  41. 41.
    Scott, R.A., Vanderkooi, G., Tuttle, R.W., Shames, P.M., Scheraga, H.A.: Minimization of polypeptide energy. III. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidin-S. Proc. Natl. Acad. Sci. 58, 2204–2211 (1967)CrossRefGoogle Scholar
  42. 42.
    Yan, J.F., Vanderkooi, G., Scheraga, H.A.: Conformational analysis of macromolecules. V. Helical structures of poly-L-aspartic acid and poly-L glutamic acid, and related compounds. J. Chem. Phys. 49, 2713–2726 (1968)CrossRefGoogle Scholar
  43. 43.
    Yan, J.F., Momany, F.A., Scheraga, H.A.: Conformational analysis of macromolecules. VI. Helical Structures of o-, m-, and p- chlorobenzyl esters of poly-L-aspartic acid. J. Am. Chem. Soc. 92, 1109–1115 (1970)CrossRefGoogle Scholar
  44. 44.
    Momany, F.A., Vanderkooi, G., Scheraga, H.A.: Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proc. Natl. Acad. Sci. USA 61, 429–436 (1968)CrossRefGoogle Scholar
  45. 45.
    Momany, F.A., McGuire, R.F., Yan, J.F., Scheraga, H.A.: Energy parameters in polypeptides. IV. Semiempirical molecular orbital calculations of conformational dependence of energy and partial charge in di- and tripeptides. J. Phys. Chem. 75, 2286–2297 (1971)CrossRefGoogle Scholar
  46. 46.
    Levitt, M., Lifson, S.: Refinement of protein confirmations using a macromolecular energy minimization procedure. J. Mol. Biol. 46, 269–279 (1969)CrossRefGoogle Scholar
  47. 47.
    Hagler, A.T., Huler, E., Lifson, S.: Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96, 5319–5327 (1974)CrossRefGoogle Scholar
  48. 48.
    Momany, F.A., McGuire, R.F., Burgess, A.W., Scheraga, H.A.: Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79, 2361–2381 (1975)CrossRefGoogle Scholar
  49. 49.
    Némethy, G., Pottle, M.S., Scheraga, H.A.: Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem. 87, 1883–1887 (1983)CrossRefGoogle Scholar
  50. 50.
    Sippl, M.J., Némethy, G., Scheraga, H.A.: Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-H∙∙∙O=C hydrogen bonds from packing configurations. J. Phys. Chem. 88, 6231–6233 (1984)CrossRefGoogle Scholar
  51. 51.
    Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline containing peptides. J. Phys. Chem. 96, 6472–6484 (1992)CrossRefGoogle Scholar
  52. 52.
    Arnautova, Y.A., Jagielska, A., Scheraga, H.A.: A new force field (ECEPP-05) for peptides, proteins and organic molecules. J. Phys. Chem. B 110, 5025–5044 (2006)CrossRefGoogle Scholar
  53. 53.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  54. 54.
    Cornell, W.D., Cieplak, P., Bayley, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  55. 55.
    Scott, W.R.P., Huenenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krueger, P., van Gusteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999)CrossRefGoogle Scholar
  56. 56.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)CrossRefGoogle Scholar
  57. 57.
    Ooi, T., Oobatake, M., Némethy, G., Scheraga, H.A.: Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 84, 3086–3090 (1987); Erratum: ibid, 84, 6015 (1987)Google Scholar
  58. 58.
    Vila, J., Williams, R.L., Vasquez, M., Scheraga, H.A.: Empirical solvation models can be used to differentiate native from near native conformations of bovine pancreatic trypsin inhibitor. Proteins: Structure, Function, and Genetics 10, 199–218 (1991)CrossRefGoogle Scholar
  59. 59.
    Nicholls, A., Honig, B.: A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comp. Chem. 12, 435–445 (1991)CrossRefGoogle Scholar
  60. 60.
    Nicholls, A., Sharp, K.A., Honig, B.: Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Genet. 11, 281–296 (1991)CrossRefGoogle Scholar
  61. 61.
    Vorobjev, Y.N., Vila, J.A., Scheraga, H.A.: FAMBE-pH: a fast and accurate method to compute the total solvation free energies of proteins. J. Phys. Chem. B 112, 11122–11136 (2008)CrossRefGoogle Scholar
  62. 62.
    Still, W.C., Tempczyk, A., Hawley, R.C., Henderickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)CrossRefGoogle Scholar
  63. 63.
    Bashford, D., Case, D.: Generalized Born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129–152 (2000)CrossRefGoogle Scholar
  64. 64.
    Ferrara, P., Apostolakis, J., Caflisch, A.: Evolution of a fast implicit solvent model for molecular dynamics simulations. Proteins 46, 24–33 (2002)CrossRefGoogle Scholar
  65. 65.
    Bursulaya, B., Brooks III, C.I.: Comparative study of folding free energy landscape of a three-stranded-sheet protein with explicit and implicit solvent models. J. Phys. Chem. B 104, 12378–12383 (2002)CrossRefGoogle Scholar
  66. 66.
    Im, W., Lee, M., Brooks, C.: Generalized Born model with a simple smoothing function. J. Comp. Chem. 24, 1691–1702 (2003)CrossRefGoogle Scholar
  67. 67.
    Scheraga, H.A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D.R., Wedemeyer, W.J., Arnautova, Y.A.: Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. J. Comput. Chem. 23, 28–34 (2002)CrossRefGoogle Scholar
  68. 68.
    Alder, B.J., Wainwright, T.: Molecular dynamics by electronic computers. In: Prigogine, I. (ed.) Proc. Int. Symp. Transp. Process. Stat. Mech., pp. 97–131. Interscience, New York (1957)Google Scholar
  69. 69.
    McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)CrossRefGoogle Scholar
  70. 70.
    Scheraga, H.A., Khalili, M., Liwo, A.: Protein folding dynamics: Overview of molecular simulation techniques. Annual Rev. Phys. Chem. 58, 57–83 (2007)CrossRefGoogle Scholar
  71. 71.
    Shirts, M., Pande, V.S.: Screen Savers of the World Unite! Science 290, 1903–1904 (2000)CrossRefGoogle Scholar
  72. 72.
    Shaw, D.E., et al.: Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Am. Chem. Soc. 336, 3787–3791 (2012)Google Scholar
  73. 73.
    Li, Z., Scheraga, H.A.: Monte Carlo minimization approach to the multiple minima problem in protein folding. Proc. Natl. Acad. Sci. USA 84, 6611–6615 (1987)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Hansmann, U.H.E., Masuya, M., Okamoto, Y.: Characteristic temperatures of folding of a small peptide. Proc. Natl. Acad. Sci. USA 94, 10652–10656 (1997)CrossRefGoogle Scholar
  75. 75.
    Dygert, M., Go, N., Scheraga, H.A.: Use of a symmetry condition to compute the conformation of gramicidin-S. Macromolecules 8, 750–761 (1975)CrossRefGoogle Scholar
  76. 76.
    Gō, N., Scheraga, H.A.: Ring closure in chain molecules with C n, I or S 2n symmetry. Macromolecules 6, 273–281 (1973)CrossRefGoogle Scholar
  77. 77.
    Mirau, R.A., Bovey, F.A.: 2D and 3D NMR studies of polypeptide structure and function. In: Abstracts, 199th ACS Meeting. Polymer Division, Boston, vol. 206 (1990)Google Scholar
  78. 78.
    Ripoll, D.R., Vila, J.A., Scheraga, H.A.: Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH. J. Mol. Biol. 339, 915–925 (2004)CrossRefGoogle Scholar
  79. 79.
    Vila, J.A., Ripoll, D.R., Scheraga, H.A.: Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures. Proc. Natl. Acad. Sci. USA 100, 14812–14816 (2003)CrossRefGoogle Scholar
  80. 80.
    Vila, J.A., Arnautova, Y.A., Martin, O.A., Scheraga, H.A.: Quantum-mechanics-derived 13Cα chemical shift server (Che Shift) for protein structure validation. Proc. Natl. Acad. Sci., USA 106, 16972–16977 (2009)CrossRefGoogle Scholar
  81. 81.
    Vila, J.A., Scheraga, H.A.: Assessing the accuracy of protein structures by quantum mechanical computations of 13Cα chemical shifts. Accounts of Chem. Res. 42, 1545–1553 (2009)CrossRefGoogle Scholar
  82. 82.
    Miller, M.H., Scheraga, H.A.: Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical coiled coil conformation. I. Poly(glycyl-prolyl-prolyl). J. Polymer Sci.: Polymer Symposia 54, 171–200 (1976)Google Scholar
  83. 83.
    Miller, M.H., Némethy, G., Scheraga, H.A.: Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical coiled-coil conformation. 2. Poly(glycyl-prolyl-hydroxyprolyl). Macromolecules 13, 470–478 (1980)CrossRefGoogle Scholar
  84. 84.
    Miller, M.H., Némethy, G., Scheraga, H.: Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical-coiled coil conformation. 3. Poly(glycyl-prolyl-alanyl). Macromolecules 13, 910–913 (1980)CrossRefGoogle Scholar
  85. 85.
    Némethy, G., Miller, M.H., Scheraga, H.A.: Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical coiled-coil conformation. 4. Poly(glycyl-alanyl-prolyl). Macromolecules 13, 914–919 (1980)CrossRefGoogle Scholar
  86. 86.
    Pincus, M.R., Scheraga, H.A.: Conformational energy calculations of enzyme-substrate and enzyme-inhibitor complexes of lysozyme. 2. Calculation of the structures of complexes with a flexible enzyme. Macromolecules 12, 633–644 (1979)CrossRefGoogle Scholar
  87. 87.
    Smith-Gill, S.J., Rupley, J.A., Pincus, M.R., Carty, R.P., Scheraga, H.A.: Experimental identification of a theoretically predicted “left sided” binding mode for (GlcNAc)6 in the active site of lysozyme. Biochemistry 23, 993–997 (1984)CrossRefGoogle Scholar
  88. 88.
    Simon, I., Glasser, L., Scheraga, H.A., Manley, R.S.J.: Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21, 990–998 (1988)CrossRefGoogle Scholar
  89. 89.
    Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochim. Biol. 51, 349–371 (2004)Google Scholar
  90. 90.
    Voth, G.A.: Coarse-graining of condensed phase and biomolecular symmetry. CRC Press, Boca Raton (2009)Google Scholar
  91. 91.
    Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253, 694–698 (1975)CrossRefGoogle Scholar
  92. 92.
    Pincus, M.R., Scheraga, H.A.: An approximate treatment of long range interactions in proteins. J. Phys. Chem. 81, 1579–1583 (1977)CrossRefGoogle Scholar
  93. 93.
    Sieradzan, A.K., Hansmann, U.H.E., Scheraga, H.A., Liwo, A.: Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues. J. Chem. Theory and Computation (submitted)Google Scholar
  94. 94.
    Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S., Scheraga, H.A.: Prediction of protein conformation on the basis of a search for compact structures; test on avian pancreatic polypeptide. Protein Science 2, 1715–1731 (1993)CrossRefGoogle Scholar
  95. 95.
    Liwo, A., Oldziej, S., Pincus, M.R., Wawak, R.J., Rackovsky, S., Scheraga, H.A.: A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J. Comput. Chem. 18, 849–873 (1997)CrossRefGoogle Scholar
  96. 96.
    Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S., Oldziej, S., Scheraga, H.A.: A united-residue force field for off-lattice protein-structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by Z-score optimization. J. Comput. Chem. 18, 874–887 (1997)CrossRefGoogle Scholar
  97. 97.
    Liwo, A., Kazmierkiewicz, R., Czaplewski, C., Groth, M., Oldziej, S., Wawak, R.J., Rackovsky, S., Pincus, M.R., Scheraga, H.A.: United-residue force field for off-lattice protein-structure simulations. III. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. J. Comput. Chem. 19, 259–276 (1998)CrossRefGoogle Scholar
  98. 98.
    Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.A.: Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J. Chem. Phys. 115, 2323–2347 (2001)CrossRefGoogle Scholar
  99. 99.
    Liwo, A., Arlukowicz, P., Czaplewski, C., Ołdziej, S., Pillardy, J., Scheraga, H.A.: A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: Application to the UNRES force field. Proc. Natl. Acad. Sci. USA 99, 1937–1942 (2002)CrossRefGoogle Scholar
  100. 100.
    Liwo, A., Ołdziej, S., Czaplewski, C., Kosłowska, U., Scheraga, H.A.: Parameterization of backbone-electrostatic and multibody contributions to the UNRES force field for protein-structure prediction from ab initio energy surfaces of model systems. J. Phys. Chem. B 108, 9421–9438 (2004)CrossRefGoogle Scholar
  101. 101.
    Liwo, A., Arłukowicz, P., Ołdziej, S., Czaplewski, C., Makowski, M., Scheraga, H.A.: Optimization of the UNRES force field by hierarchical design of the potential-energy landscape. 1. Tests of the approach using simple lattice protein models. J. Phys. Chem. B 108, 16918–16933 (2004)CrossRefGoogle Scholar
  102. 102.
    Ołdziej, S., Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.A.: Optimization of the UNRES force field by hierarchical design of the potential-energy landscape. 2. Off-lattice tests of the method with single proteins. J. Phys. Chem. B 108, 16934–16949 (2004)CrossRefGoogle Scholar
  103. 103.
    Ołdziej, S., Lagiewka, J., Liwo, A., Czaplewski, C., Chinchio, M., Nanias, M., Scheraga, H.A.: Optimization of the UNRES force field by hierarchical design of the potential-energy landscape. 3. Use of many proteins in optimization. J Phys. Chem. B 108, 16950–16959 (2004)CrossRefGoogle Scholar
  104. 104.
    Liwo, A., Khalili, M., Scheraga, H.A.: Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc. Natl. Acad. Sci. USA 102, 2362–2367 (2005)CrossRefGoogle Scholar
  105. 105.
    Khalili, M., Liwo, A., Rakowski, F., Grochowski, P., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. J. Phys. Chem. B 109, 13785–13797 (2005)CrossRefGoogle Scholar
  106. 106.
    Khalili, M., Liwo, A., Jagielska, A., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model α-helical systems. J. Phys. Chem. B 109, 13798–13810 (2005)CrossRefGoogle Scholar
  107. 107.
    Liwo, A., Khalili, M., Czaplewski, C., Kalinowski, S., Ołdziej, S., Wachucik, K., Scheraga, H.A.: Modification and optimization of the united-residue (UNRES) potential-energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. J. Phys. Chem. B 111, 260–285 (2007)CrossRefGoogle Scholar
  108. 108.
    Kozlowska, U., Liwo, A., Scheraga, H.A.: Determination of virtual-bond-angle potentials of mean force for coarse-grained simulations of protein structure and folding from ab initio energy surfaces of terminally-blocked glycine, alanine, and proline. J Physics: Condensed Matter 19, 285203-1—285203-15 (2007)Google Scholar
  109. 109.
    Liwo, A., Czaplewski, C., Ołdziej, S., Rojas, A.V., Kazmierkiewicz, R., Makowski, M., Murarka, R.K., Scheraga, H.A.: Simulation of protein structure and dynamics with the coarse-grained UNRES force field. In: Voth, G.A. (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems, pp. 107–122. CRC Press, Boca Raton (2008)Google Scholar
  110. 110.
    Ołdziej, S., Czaplewski, C., Liwo, A., Scheraga, H.A.: Towards temperature dependent coarse-grained potential of side-chain interactions for protein folding simulations. In: IEEE International Conference on Bioinformatics and Bioengineering, BIBE, pp. 263–266 (2010)Google Scholar
  111. 111.
    Liwo, A., Ołdziej, S., Czaplewski, C., Kleinerman, D.S., Blood, P., Scheraga, H.A.: Implementation of molecular dynamics and its extensions with the coarse-grained UNRES force field on massively parallel systems; towards millisecond-scale simulations of protein structure, dynamics, and thermodynamics. J. Chem. Theory and Comput. 6, 890–909 (2010)CrossRefGoogle Scholar
  112. 112.
    Maisuradze, G.G., Senet, P., Czaplewski, C., Liwo, A., Scheraga, H.A.: Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. J. Phys. Chem. A 114, 4471–4485 (2010)CrossRefGoogle Scholar
  113. 113.
    Makowski, M., Liwo, A., Scheraga, H.A.: Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. VI. Oppositely-charged side chains. J. Phys. Chem. 115, 6130–6137 (2011)CrossRefGoogle Scholar
  114. 114.
    Sieradzan, A.K., Scheraga, H.A., Liwo, A.: Determination of effective potentials for the stretching of Cα…Cα virtual bonds in polypeptide chains for coarse-grained simulations of proteins from ab initio energy surfaces of N-methylacetamide and N-acetylpyrrolidine. J. Chem. Theory and Computation 8, 1334–1343 (2012)CrossRefGoogle Scholar
  115. 115.
    Shen, H., Liwo, A., Scheraga, H.A.: An improved functional form for the temperature, scaling factors of the components of the mesoscopic UNRES force field for simulations of protein structure and dynamics. J. Phys. Chem. B 113, 8738–8744 (2009)CrossRefGoogle Scholar
  116. 116.
    Kolinski, A., Skolnick, J.: Discretized model of proteins: I. Monte Carlo study of cooperativity in homopolypeptides. J. Chem. Phys. 97, 9412–9426 (1992)CrossRefGoogle Scholar
  117. 117.
    He, Y., Xiao, Y., Liwo, A., Scheraga, H.A.: Exploring the parameter space of the coarse-grained UNRES force field by random search: Selecting a transferable medium-resolution force field. J. Comput. Chem. 30, 2127–2135 (2009)CrossRefGoogle Scholar
  118. 118.
    Lee, J., Scheraga, H.A., Rackovsky, S.: New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. J. Comput. Chem. 18, 1222–1232 (1997)CrossRefGoogle Scholar
  119. 119.
    Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Energy-based reconstruction of a protein backbone from its α-carbon trace by a Monte-Carlo method. J. Comput. Chem. 23, 715–723 (2002)CrossRefGoogle Scholar
  120. 120.
    Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Addition of side chains to a known backbone with defined side-chain centroids. Biophys. Chem. 100, 261–280 (2003); Erratum: Biophys Chem. 106, 91 (2003)Google Scholar
  121. 121.
    Elber, R., Ghosh, A., Cardenas, A.: Long time dynamics of complex systems. Acc. Chem. Res. 35, 396–403 (2002)CrossRefGoogle Scholar
  122. 122.
    Ghosh, A., Elber, R., Scheraga, H.A.: An atomically detailed study of the folding pathways of protein A with the stochastic difference equation. Proc. Natl. Acad. Sci. USA 99, 10394–10398 (2002)CrossRefGoogle Scholar
  123. 123.
    Kubo, R.: Generalized Cumulant Expansion Method. J. Phys. Soc. Jpn 17, 1100–1120 (1962)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Rojas, A.V., Liwo, A., Scheraga, H.A.: Molecular dynamics with the united-residue (UNRES) force field. Ab initio folding simulations of multi-chain proteins. J. Phys. Chem. B 111, 293–309 (2007)CrossRefGoogle Scholar
  125. 125.
    Liwo, A., Lee, J., Ripoll, D.R., Pillardy, J., Scheraga, H.A.: Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96, 5482–5485 (1999)CrossRefGoogle Scholar
  126. 126.
    Khalili, M., Liwo, A., Scheraga, H.A.: Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains. J. Mol. Biol. 355, 536–547 (2006)CrossRefGoogle Scholar
  127. 127.
    Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulations of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986)MathSciNetCrossRefGoogle Scholar
  128. 128.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRefGoogle Scholar
  129. 129.
    Nanias, M., Chinchio, M., Ołdziej, S., Czaplewski, C., Scheraga, H.A.: Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA and CFMC. J. Comput. Chem. 26, 1472–1486 (2005)CrossRefGoogle Scholar
  130. 130.
    Rhee, Y.M., Pande, V.S.: Multiplexed-Replica Exchange Molecular Dynamics Method for Protein Folding Simulation. Biophys. J. 84, 775–786 (2003)CrossRefGoogle Scholar
  131. 131.
    Czaplewski, C., Kalinowski, S., Liwo, A., Scheraga, H.A.: Application of multiplexed replica exchange molecular dynamics to the UNRES force field: tests with α and α + β proteins. J. Chem. Theory and Comput. 5, 627–640 (2009)CrossRefGoogle Scholar
  132. 132.
    Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly; treatment of Aβ-peptide aggregation with a coarse-grained united-residue force field. J. Mol. Biol. 404, 537–552 (2010)CrossRefGoogle Scholar
  133. 133.
    He, Y., Liwo, A., Weinstein, H., Scheraga, H.A.: PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics. J. Mol. Biol. 405, 298–314 (2011)CrossRefGoogle Scholar
  134. 134.
    Golas, E., Maisuradze, G.G., Senet, P., Ołdziej, S., Czaplewski, C., Scheraga, H.A., Liwo, A.: Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J. Chem. Theory and Computation 8, 1750–1764 (2012)CrossRefGoogle Scholar
  135. 135.
    Marmur, J., Doty, P.: Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol. 3, 585–594 (1961)CrossRefGoogle Scholar
  136. 136.
    Peyrard, M., Bishop, A.R.: Statistical Mechanics of a Nonlinear Model for DNA Denaturation. Phys. Rev. Lett. 62, 2755–2758 (1989)CrossRefGoogle Scholar
  137. 137.
    Olson, W.K.: Simulating DNA at low resolution. Curr. Opinion Struct. Biol. 6, 242–256 (1996)CrossRefGoogle Scholar
  138. 138.
    Hyeon, C., Thirumalai, D.: Mechanical unfolding of RNA hairpins. Proc. Natl. Acad. Sci. U S A 102, 6789–6794 (2005)CrossRefGoogle Scholar
  139. 139.
    Knotts, T., Rathore, N., Schwartz, D.C., de Pablo, J.J.: A coarse grain model for DNA. J. Chem. Phys. 126, 084901– 084901-12 (2007)Google Scholar
  140. 140.
    Voltz, K., Trylska, J., Tozzini, V., Kurkal-Siebert, V., Langowski, J., Smith, J.: Coarse-Grained Force Field for the Nucleosome from Self-Consistent Multiscaling. J. Comput. Chem. 29, 1429–1439 (2008)CrossRefGoogle Scholar
  141. 141.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: DNA Nanotweezers Studied with a Coarse-Grained Model of DNA. Phys. Rev. Lett. 104, 178101-1–178101-4 (2010)Google Scholar
  142. 142.
    Maciejczyk, M., Spasic, A., Liwo, A., Scheraga, H.A.: Coarse-grained model of nucleic acid bases. J. Comput. Chem. 31, 1644–1655 (2010)Google Scholar
  143. 143.
    He, Y., Maciejczyk, M., Ołdziej, S., Scheraga, H.A., Liwo, A.: Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Phys. Rev. Lett. 110, 098101 (2013)Google Scholar
  144. 144.
    Pollack, L.: Fashioning NAMD, a History of Risk and Reward: Klaus Schulten Reminisces. In: Schlick, T. (ed.) Innovations in Biomolecular Modeling and Simulations, vol. 1., Royal Society of Chemistry, Cambridge (2012)CrossRefGoogle Scholar
  145. 145.
    Tama, F., Valle, M., Frank, J., Brooks III, C.L.: Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 100, 9319–9323 (2003)CrossRefGoogle Scholar
  146. 146.
    Yang, L., Song, G., Jernigan, R.L.: How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys. J. 93, 920–929 (2007)CrossRefGoogle Scholar
  147. 147.
    Senet, P., Maisuradze, G.G., Foulie, C., Delarue, P., Scheraga, H.A.: How main-chains of proteins explore the free-energy landscape in native states. Proc. Natl. Acad. Sci. USA 105, 19708–19713 (2008)CrossRefGoogle Scholar
  148. 148.
    Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Nonexponential decay of internal rotational correlation functions of native proteins and self-similar structural fluctuations. Proc. Natl. Acad. Sci. USA 107, 19844–19849 (2010)CrossRefGoogle Scholar
  149. 149.
    Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native state. Proc. Natl. Acad. Sci. 109, 10346–10351 (2012)CrossRefGoogle Scholar
  150. 150.
    Schlick, T. (ed.): Innovations in Biomolecular Modeling and Simulations, vols. 1 and 2. Royal Society of Chemistry, Cambridge (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Baker Laboratory of Chemistry and Chemical BiologyCornell UniversityIthacaU.S.A.

Personalised recommendations