On Computation of Approximate Joint Block-Diagonalization Using Ordinary AJD

  • Petr Tichavský
  • Arie Yeredor
  • Zbyněk Koldovský
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7191)


Approximate joint block diagonalization (AJBD) of a set of matrices has applications in blind source separation, e.g., when the signal mixtures contain mutually independent subspaces of dimension higher than one. The main message of this paper is that certain ordinary approximate joint diagonalization (AJD) methods (which were originally derived for “degenerate” subspaces of dimension 1) can also be used successfully for AJBD, but not all are suitable equally well. In particular, we prove that when the set is exactly jointly block-diagonalizable, perfect block-diagonalization is attainable by the recently proposed AJD algorithm “U-WEDGE” (uniformly weighted exhaustive diagonalization with Gaussian iteration) - but this basic consistency property is not shared by some other popular AJD algorithms. In addition, we show using simulation, that in the more general noisy case, the subspace identification accuracy of U-WEDGE compares favorably to competitors.


Blind Source Separation Angular Error Blind Separation Unperturbed Case Average Angular Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afsari, B.: Sensitivity analysis for the problem of matrix joint diagonalization. SIMAX 30(3), 1148–1171 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Afsari, B.: Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 1–7. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Abed-Meraim, K., Belouchrani, A.: Algorithms for Joint Block Diagonalization. In: Proc. of EUSIPCO 2004, Vienna, Austria, pp. 209–212 (2004)Google Scholar
  4. 4.
    de Lathauwer, L.: Decomposition of higher-order tensor in block terms - Part II: definitions and uniqueness. SIAM J. Matrix Anal. and Appl. 30(3), 1033–1066 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Févotte, C., Theis, F.J.: Pivot Selection Strategies in Jacobi Joint Block-Diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 177–184. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ghennioui, H., et al.: A Nonunitary Joint Block Diagonalization Algorithm for Blind Separation of Convolutive Mixtures of Sources. IEEE Signal Processing Letters 14(11), 860–863 (2007)CrossRefGoogle Scholar
  7. 7.
    Koldovský, Z., Tichavský, P.: A Comparison of Independent Component and Independent Subspace Analysis Algorithms. In: EUSIPCO 2009, Glasgow, Scotland, April 24-28, pp. 1447–1451 (2009)Google Scholar
  8. 8.
    Koldovský, Z., Tichavský, P.: Time-domain blind separation of audio sources based on a complete ICA decomposition of an observation space. IEEE Tr. Audio, Speech, and Language Processing 19(2), 406–416 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, X.-L., Zhang, X.D.: Nonorthogonal joint diagonalization free of degenerate solutions. IEEE Tr. Signal Processing 55(5), 1803–1814 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nion, D.: A Tensor Framework for Nonunitary Joint Block Diagonalization. IEEE Tr. Signal Processing  59(10), 4585–4594 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. and Appl. 22(4), 1136–1152 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Szabó, Z., Póczos, B., Lörincz, A.: Separation theorem for independent subspace analysis and its consequences. Pattern Recognition 45(4), 1782–1791 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tichavský, P.: Matlab code for U-WEDGE, WEDGE, BG-WEDGE and WASOBI,
  14. 14.
    Tichavský, P., Yeredor, A.: Fast Approximate Joint Diagonalization Incorporating Weight Matrices. IEEE Tr. Signal Processing 57(3), 878–891 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vollgraf, R., Obermayer, K.: Quadratic optimization for simultaneous matrix diagonalization. IEEE Tr. Signal Processing 54(9), 3270–3278 (2006)CrossRefGoogle Scholar
  16. 16.
    Ziehe, A., Laskov, P., Nolte, G., Müller, K.-R.: A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its application to Blind Source Separation. Journal of Machine Learning Research 5, 777–800 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr Tichavský
    • 1
    • 3
  • Arie Yeredor
    • 2
  • Zbyněk Koldovský
    • 1
    • 3
  1. 1.Institute of Information Theory and AutomationPraha 8Czech Republic
  2. 2.Dept. of Electrical Engineering - Systems, School of Electrical EngineeringTel-Aviv UniversityTel-AvivIsrael
  3. 3.Faculty of Mechatronic and Interdisciplinary StudiesTechnical University of LiberecLiberecCzech Republic

Personalised recommendations