Optical Properties of Silicon Nanoparticles

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter reviews recent results on optical spectroscopy on silicon nanoparticles. The quantum confinement effect causing a spectral shift of the photoluminescence together with an intensity enhancement is discussed. The small spatial dimensions lead not only to a change of the electronic states, but affect also the vibronic spectrum as is seen in results on first- and second-order Raman scattering. Using time-resolved spectroscopy, the excitonic fine structure of silicon nano-particles is investigated and a crossover of bright and dark exciton states is found. The analysis of the recombination dynamics allows to determine the size-dependence of the oscillator strength, which is in the order of 10\(^{-5}\) and increases with decreasing particle size. Finally, we demonstrate an electroluminescence device based on silicon particles using impact ionization.

Keywords

Optical Bandgap Porous Silicon Oscillator Strength Decrease Particle Size Bulk Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    S. Furukawa, T. Miyasato, Quantum size effects on the optical band gap of microcrystalline Si:H. Phys. Rev. B 38, 5726 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    H.Z. Song, X.M. Bao, Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms. Phys. Rev. B 55, 6988 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Blasing, Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO[sub 2] superlattice approach. Appl. Phys. Lett. 80, 661 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, C. Meier, Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039 (2004)CrossRefGoogle Scholar
  6. 6.
    H. Wiggers, R. Starke, P. Roth, Silicon particle formation by pyrolysis of silane in a hot wall gas phase reactor. Chem. Eng. Technol. 24, 261 (2001)CrossRefGoogle Scholar
  7. 7.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. Van Tendeloo, V.V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nano. 3, 174 (2008)CrossRefGoogle Scholar
  9. 9.
    V.G. Kravets, C. Meier, D. Konjhodzic, A. Lorke, H. Wiggers, Infrared properties of silicon nanoparticles. J. Appl. Phys. 97, 084306 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C. Meier, S. Lüttjohann, V.G. Kravets, H. Nienhaus, A. Lorke, H. Wiggers, Raman properties of silicon nanoparticles. Phys. E Low dimens. Sys. Nanostruct. 32, 155 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien, E. Gratton, Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles. Appl. Phys. Lett. 77, 4086 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)ADSCrossRefGoogle Scholar
  15. 15.
    R. Meyer, D. Comtesse, Vibrational density of states of silicon nanoparticles. Phys. Rev. B 83, 014301 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals. Phys. Rev. B 72, 075423 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Kim, H. Rho, L.M. Smith, H.E. Jackson, S. Lee, M. Dobrowolska, J.K. Furdyna, Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots. Appl. Phys. Lett. 75, 214 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Kim, Y.S. Joh, J.H. Song, K.S. Baek, S.K. Chang, E.D. Sim, Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski-Krastanov mode. Appl. Phys. Lett. 83, 2656 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    E.C. Le Ru, J. Fack, R. Murray, Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys. Rev. B 67, 245318 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    S. Lüttjohann, C. Meier, M. Offer, A. Lorke, H. Wiggers, Temperature-induced crossover between bright and dark exciton emission in silicon nanoparticles. Europhys. Lett. 79, 37002 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    M.L. Brongersma, P.G. Kik, A. Polman, K.S. Min, H.A. Atwater, Size-dependent electron-hole exchange interaction in Si nanocrystals. Appl. Phys. Lett. 76, 351 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    M. Dovrat, Y. Shalibo, N. Arad, I. Popov, S.T. Lee, A. Sa’ar, Fine structure and selection rules for excitonic transitions in silicon nanostructures. Phys. Rev. B 79, 125306 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62, 15942 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    L. Pavesi, M. Ceschini, Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    M. Paillard, X. Marie, E. Vanelle, T. Amand, V.K. Kalevich, A.R. Kovsh, A.E. Zhukov, V.M. Ustinov, Time-resolved photoluminescence in self-assembled InAs/GaAs quantum dots under strictly resonant excitation. Appl. Phys. Lett. 76, 76 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    S. Raymond, S. Fafard, S. Charbonneau, R. Leon, D. Leonard, P.M. Petroff, J.L. Merz, Photocarrier recombination in Al\(_{y}\) In\(_{1-y}\) As/Al\(_{x}\) Ga\(_{1-x}\) As self-assembled quantum dots. Phys. Rev. B 52, 17238 (1995)Google Scholar
  27. 27.
    D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Breakdown of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett. 81, 2803 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Hybertsen, Absorption and emission of light in nanoscale silicon structures. Phys. Rev. Lett. 72, 1514 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    B. Julsgaard, Y.-W. Lu, P. Balling, A.N. Larsen, Thermalization of exciton states in silicon nanocrystals. Appl. Phys. Lett. 95, 183107 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Merle, M. Capizzi, P. Fiorini, A. Frova, Uniaxially stressed silicon: Fine structure of the exciton and deformation potentials. Phys. Rev. B 17, 4821 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, S.Q. Gong, Quantum size effects on exciton states in indirect-gap quantum dots. Phys. Rev. B 68, 035334 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    L. Mangolini, E. Thimsen, U. Kortshagen, High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Lett. 5, 655 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    D. Jurbergs, E. Rogojina, L. Mangolini, U. Kortshagen, Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J.-B. Xia, Electronic structures of zero-dimensional quantum wells. Phys. Rev. B 40, 8500 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Yoffe, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    C. Meier, A. Gondorf, S. Lüttjohann, A. Lorke, H. Wiggers, Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl.Phys. 101, 103112 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A. Richter, P. Steiner, F. Kozlowski, W. Lang, Current-induced light emission from a porous silicon device. IEEE Electron Device Lett. 12, 691 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    J. Valenta, N. Lalic, J. Linnros, Electroluminescence microscopy and spectroscopy of silicon nanocrystals in thin SiO2 layers. Opt. Mater. 17, 45 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    A. Fojtik, J. Valenta, T.H. Stuchlíková, J. Stuchlík, I. Pelant, J. Kocka, Electroluminescence of silicon nanocrystals in p-i-n diode structures. Thin Solid Films 515, 775 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Cheong, A. Tanaka, D. Hippo, K. Usami, Y. Tsuchiya, H. Mizuta, S. Oda, Visible Electroluminescence from Spherical-Shaped Silicon Nanocrystals. Jpn. J. Appl. Phys. 47, 8137 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    J. Theis, M. Geller, A. Lorke, H. Wiggers, C. Meier, Electroluminescence from silicon nanoparticles fabricated from the gas phase. Nanotechnology 21, 455201 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    J. Xu, K. Makihara, H. Deki, S. Miyzazki, Electroluminescence from Si quantum dots/SiO2 multilayers with ultrathin oxide layers due to bipolar injection. Solid State Commun. 149, 739 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, Excitation and de-excitation properties of silicon quantum dots under electrical pumping. Appl. Phys. Lett. 81, 1866 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    C.W. Liu, S.T. Chang, W.T. Liu, M.-J. Chen, C.-F. Lin, Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes. Appl. Phys. Lett. 77, 4347 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    A. Gupta, S.G. Khalil, M. Offer, M. Geller, M. Winterer, A. Lorke, H. Wiggers, Synthesis and ink-jet printing of highly luminescing silicon nanoparticles for printable electronics. J. Nanosci. Nanotechnol. 11, 5028 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Gondorf, M. Geller, J. Weißbon, A. Lorke, M. Inhester, A. Prodi-Schwab, D. Adam, Mobility and carrier density in nanoporous indium tin oxide films. Phys. Rev. B 83, 212201 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics Department and CeOPPUniversity of PaderbornPaderbornGermany
  2. 2.Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations