Simulation of Cluster Sintering, Dipolar Chain Formation, and Ferroelectric Nanoparticulate Systems

  • Anna Grünebohm
  • Alfred Hucht
  • Ralf Meyer
  • Denis Comtesse
  • Peter Entel
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Magnetic and ferroelectric nanoparticles are subjects of increasing basic research for future technologies. In this work Fe and Ni clusters and near-ferroelectric TiO\(_2\) clusters have been chosen as representatives in order to discuss fundamental issues such as sintering of magnetic and near-ferroelectric clusters as well as configurations resulting from cluster agglomeration due to magnetic dipolar interactions.

Keywords

Magnetic Nanoparticles Sinter Process Interparticle Distance Agglomeration Process Anatase Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank M. Fendrich who prepared the start configuration for the sinter simulations of Ni nanoparticles, and S. Buschmann who worked on the dipolar nanoparticles. Computation time was granted by the John-von-Neumann Institute of Computing.

References

  1. 1.
    B. Bhushan, Springer Handbook of Nanotechnology (Springer, Berlin, 2006)Google Scholar
  2. 2.
    A.S. Edelstein, R.C. Cammarata, Nanomaterials: Synthesis Properties and Applications (Institute of Physics, Bristol, 1996)CrossRefGoogle Scholar
  3. 3.
    C. Guet, P. Hobza, F. Spiegelmann, F. David, Atomic clusters and nanoparticles. Agregats atomiques et nanoparticules: Les Houches Session LXXIII 2–28 July 2000 (Les Houches - Ecole d’Ete de Physique Theorique), Vol. 73, (Springer, Berlin, 2001)Google Scholar
  4. 4.
    J. Knipping, H. Wiggers, B.F. Kock, T. Huelser, B. Rellinghaus, P. Roth, J. Nanotechnol. 15, 1665 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    V. Salgueiriño-Maceira, M.A. Correa-Duarte, A. Hucht, M. Farle, J. Magn. Magn. Mater. 303, 163 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    T. Huelser, H. Wiggers, P. Ifeacho, O. Dmitrieva, G. Dumpich, A. Lorke, J. Nanotechnol. 17, 3111 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1991)Google Scholar
  9. 9.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471–2474 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    F. Cleri, V. Rosatto, Phys. Rev. B 48, 22–33 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    S. Ogata, H. Iyetomi, K. Tsurutu, F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, J. Appl. Phys. 88, 6011–6015 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S. Ogata, H. Iyetomi, K. Tsurutu, F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, J. Appl. Phys. 86, 3036–6041 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A. Hucht, S. Buschmann, P. Entel, Europhys. Lett. 77, 57003 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    I.M.L. Billas, J.A. Becker, A. Châtelain, W.A. de Heer, Phys. Rev. Lett. 71, 4067 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    P. Pawlow, Z. Phys, Chem. 65, 1 (1909)Google Scholar
  20. 20.
    P.V. Hendriksen, S. Linderoth, P.-A. Lindgard, Phys. Rev. B 48, 7259 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
  22. 22.
    R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. (SIAM, Philadelphia, 1994)CrossRefGoogle Scholar
  23. 23.
    N. Combe, P. Jensen, A. Pimpinelli, Phys. Rev. Lett. 85, 110–113 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    G. Rollmann, M.E. Gruner, A. Hucht, R. Meyer, P. Entel, M. Tiago, J.R. Chelikowsky, Phys. Rev. Lett. 99, 083402 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, Science 296, 1681–1684 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hendy, S.A. Brown, M. Hyslop, Phys. Rev. B 68, 241403 (2003)Google Scholar
  27. 27.
    C. Lee, P. Ghosez, X. Gonze, Phys. Rev. B 50, 13379–13387 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    J.G. Traylor, H.G. Smith, R.M. Nicklow, M.K. Wilkinson, Phys. Rev. B 3, 3457 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    B. Montanari, N.M. Harrison, J. Phys. Condens. Matter. 16, 273 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    A. Grünebohm, C. Ederer, P. Entel, First-principles investigation of incipient ferroelectric trends of rutile TiO\(_2\) in bulk and at the (110) surface, submitted to Phys. Rev. B (2012)Google Scholar
  31. 31.
    G. Li, J. Boerio-Goates, B.F. Woodfield, L. Li, Appl. Phys. Lett. 85, 2059 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    P. Reinhardt, B.A. Heß, Phys. Rev. B 50, 12015 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Grünebohm
    • 1
  • Alfred Hucht
    • 1
  • Ralf Meyer
    • 2
  • Denis Comtesse
    • 1
  • Peter Entel
    • 1
  1. 1.University of Duisburg-Essen, and CENIDEDuisburgGermany
  2. 2.Laurentian UniversitySudburyCanada

Personalised recommendations