Nucleation, Structure and Magnetism of Transition Metal Clusters from First Principles

  • Sanjubala Sahoo
  • Markus E. Gruner
  • Alfred Hucht
  • Georg Rollmann
  • Peter Entel
Part of the NanoScience and Technology book series (NANO)


Properties of transition metal (TM) clusters such as structural stability, growth and magnetic properties are studied using the density functional theory (DFT). We find that for both elemental and binary clusters, different morphologies are stable for different ranges of cluster sizes. We discuss possible structural transformations namely Jahn-Teller (JT) and Mackay transformation (MT) occurring in TM clusters. While the JT-distorted cluster is stable for a Fe\(_{13}\) icosahedron, the MT-distorted structure is stable for Co\(_{13}\). For Ni\(_{13}\), however, both distortions lead to similar energies. In larger clusters, both JT and MT compete with each other, and as a result we find a higher stability for large Fe clusters with a shell wise Mackay transformation. Studies on binary Fe-Pt clusters show a segregation tendency of Pt atoms to the surfaces of the clusters. The ordered Fe-Pt icosahedral structures show enhanced stability compared to the L1\(_0\) cuboctahedron. From the studies on magnetocrystalline anisotropy (MAE) for clusters, we find that relaxed Fe\(_{13}\) and Ni\(_{13}\) have several orders of magnitude larger MAE as compared to the corresponding bulk values. However, Co\(_{13}\) does not follow this trend.


Bimetallic Cluster Average Magnetic Moment Binary Cluster Icosahedral Structure Transformation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the John von Neumann Institute for Computing, the Jülich supercomputing Center and the Center for Computational Sciences and Simulation (CCSS), University of Duisburg-Essen for computation time and support. Also Financial support was granted by the Deutsche Forschungsgemeinschaft through SFB 445.


  1. 1.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xie, J.A. Blackman, Magnetism of iron clusters embedded in cobalt. Phys. Rev. B 66, 085410 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    O. Diéguez, M.M.G. Alemany, C. Rey, P. Ordejón, L.J. Gallego, Density-functional calculations of the structures, binding energies, and magnetic moments of Fe clusters with 2 to 17 atoms. Phys. Rev. B 63, 205407 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Postnikov, P. Entel, J.M. Soler, Density functional simulation of small Fe nanoparticles. Eur. Phys. J. D 25, 261 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    H.M. Duan, Q.Q. Zheng, Symmetry and magnetic properties of transition metal clusters. Phys. Lett. A 280, 333 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Gruner, P. Entel, Competition between ordering, twinning, and segregation in binary magnetic 3\(d\)-5\(d\) nanoparticles: a supercomputing perspective. Int. J. Quant. Chem. 112, 277 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Antoniak, M.E. Gruner, M. Spasova, A.V. Trunova, F.M. Römer, A. Warland, B. Krumme, K. Fauth, S. Sun, P. Entel, M. Farle, H. Wende, A guideline for atomistic design and understanding of ultrahard nanomagnets. Nat. Commun. 2, 528 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Perdew, in Electronic Structure of Solids’91, ed. by P. Ziesche, H. Eschrig (Akademie, Berlin, 1991), pp. 11–20Google Scholar
  13. 13.
    S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    M.E. Gruner, G. Rollmann, P. Entel, Large-scale first-principles calculations of magnetic nanoparticles, in Proceedings of the NIC Symposium 2008, vol. 39, ed. by G. Münster, D. Wolf, M. Kremer, NIC Series (John von Neumann Institute for Computing, Jülich, 2008), p. 161Google Scholar
  15. 15.
    M.E. Gruner, P. Entel, Simulating functional magnetic materials on supercomputers. J. Phys. Condens. Matter 21, 293201 (2009)Google Scholar
  16. 16.
    R. Ferrando, A. Fortunelli, G. Rossi, Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B. 72, 085449 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S. Heinrichs, W. Dieterich, P. Maass, Modeling epitaxial growth of binary alloy nanostructures on a weakly interacting substrate. Phys. Rev. B. 75, 085437 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    F.R. Negreiros, Z. Kuntová, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli, Structures of gas-phase Ag-Pd nanoclusters: a computational study. J. Chem. Phys. 132, 234703 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Pellarin, B. Baguenard, J.L. Vialle, J. Lerme, M. Broyer, J. Miller, A. Perez, Evidence for icosahedral atomic shell structure in nickel and cobalt clusters. Comparison with iron clusters. Chem. Phys. Lett. 217, 349 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    T. Vystavel, G. Palasantzas, S.A. Koch, J.T.M. De Hosson, Nanosized iron clusters investigated with in situ transmission electron microscopy. Appl. Phys. Lett. 82, 197 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M.I. Katsnelson, Y.V. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Gruner, P. Entel, I. Opahle, M. Richter, Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni\(_2\)MnGa. J. Mater. Sci. 43, 3825 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    E.C. Bain, The nature of martensite. Trans. Am. Inst. Min. Metall. Pet. Eng. 70, 25 (1924)Google Scholar
  24. 24.
    Z. Nishiyama, Martensitic Transformation (Academic Press, New York, 1978)Google Scholar
  25. 25.
    A.L. Mackay, A dense non-crystallographic packing of equal spheres. Acta Cryst. 15, 916–918 (1962)CrossRefGoogle Scholar
  26. 26.
    G. Rollmann, S. Sahoo, P. Entel, Structural and magnetic properties of Fe-Ni clusters. Phys. Status Solid. 201, 3263 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    G. Rollmann, M.E. Gruner, A. Hucht, P. Entel, Shellwise Mackay transformation in iron nanoclusters. Phys. Rev. Lett. 99, 083402 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    G. Rollmann, P. Entel, S. Sahoo, Competing structural and magnetic effects in small iron clusters. Comput. Mater. Sci. 35, 275 (2006)CrossRefGoogle Scholar
  29. 29.
    H. Jónsson, H.C. Andersen, Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    M.E. Gruner, G. Rollmann, A. Hucht, P. Entel, Structural and magnetic properties of transition metal nanoparticles from first principles, in Advances in Solid State Physics, vol. 47, ed. by R. Haug (Springer, Berlin, 2008), p. 117Google Scholar
  31. 31.
    I.M.L. Billas, J.A. Becker, A. Châtelain, W.A. de Heer, Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature. Phys. Rev. Lett. 71, 4067 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    I.M.L. Billas, A. Châtelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    I.M.L. Billas, A. Châtelain, W.A. de Heer, Magnetism of Fe, Co and Ni clusters in molecular beams. J. Magn. Mat. 168, 64 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    H.C. Herper, E. Hoffmann, P. Entel, Ab initio full-potential study of the structural and magnetic phase stability of iron. Phys. Rev. B 60, 3839 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    M.L. Tiago, Y. Zhou, M.M.G. Alemany, Y. Saad, J.R. Chelikowsky, Evolution of magnetism in iron from the atom to the bulk. Phys. Rev. Lett. 97, 147201 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    M.E. Gruner, G. Rollmann, S. Sahoo, P. Entel, Magnetism of close packed Fe\(_{147}\) clusters. Phase Trans. 79, 701 (2006)CrossRefGoogle Scholar
  37. 37.
    R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845 (2008)CrossRefGoogle Scholar
  38. 38.
    J.M. Montejano-Carrizales, M.P. Iñiguez, J.A. Alonso, Embedded-atom method applied to bimetallic clusters: the Cu-Ni and Cu-Pd systems. Phys. Rev. B 49, 16649 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    F. Baletto, C. Mottet, R. Ferrando, Growth simulations of silver shells on copper and palladium nanoclusters. Phys. Rev. B 66, 155420 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    J.L. Rousset, A.M. Cadrot, F.J. Cadete Santos Aires, A. Renouprez, P.Mélinon, A. Perez, M. Pellarin, J.L. Vialle, M. Broyer, Study of bimetallic PdPt clusters in both free and supported phases. J. Chem. Phys. 102, 8574 (1995)Google Scholar
  41. 41.
    D. Zitoun, M. Respaud, M. Fromen, M.J. Casanove, P. Lecante, C. Amiens, B. Chaudret, Magnetic enhancement in nanoscale CoRh particles. Phys. Rev. Lett. 89, 037203 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    L.Y. Lu, D. Wang, X.G. Xu, Q. Zhan, Y. Jiang, Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J. Chem. Phys. 113, 19867 (2009)Google Scholar
  43. 43.
    M.L. Plumer, E.J. Van, D. Weller (eds.), The physics of ultra-high-density magnetic recording (Springer, Berlin, 2001)Google Scholar
  44. 44.
    D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    U. Wiedwald, L. Han, J. Biskupek, U. Kaiser, P. Ziemann, Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles. Beilstein J. Nanotechnol. 1, 24 (2010)CrossRefGoogle Scholar
  46. 46.
    B. Rellinghaus, S. Stappert, M. Acet, E.F. Wassermann, Magnetic properties of FePt nanoparticles. J. Magn. Magn. Mater. 266, 142 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles. Phys. Rev. Lett. 100, 087203 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A. Dannenberg, M.E. Gruner, P. Entel, First-principles study of the structural stability of L\(1_1\) order in Pt-based alloys. J. Phys. Conf. Ser. 200, 072021 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    A. Dannenberg, M.E. Gruner, A. Hucht, P. Entel, Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies. Phys. Rev. B 80, 245438 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    T. Balashov, T. Schuh, A.F. Takács, A. Ernst, S. Ostanin, J. Henk, I. Mertig, P. Bruno, T. Miyamachi, S. Suga, W. Wulfhekel, Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of Fe and Co on Pt(111). Phys. Rev. Lett. 102, 257203 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    R. Félix-Medina, J. Dorantes-Dávila, G.M. Pastor, Ground-state magnetic properties of \(Co_{N}\) clusters on Pd(111): spin moments, orbital moments, and magnetic anisotropy. Phys. Rev. B 67, 094430 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    S. Rohart, C. Raufast, L. Favre, E. Bernstein, E. Bonet, V. Dupuis, Magnetic anisotropy of \(Co_{x}Pt_{1-{}x}\) clusters embedded in a matrix: influences of the cluster chemical composition and the matrix nature. Phys. Rev. B 74, 104408 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    A.N. Andriotis, M. Menon, Orbital magnetism: pros and cons for enhancing the cluster magnetism. Phys. Rev. Lett. 93, 026402 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Š. Pick, V.S. Stepanyuk, A.L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, P. Bruno, Magnetism and structure on the atomic scale: small cobalt clusters in Cu(001). Phys. Rev. B 70, 224419 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    J. Hafner, D. Spišák, Morphology and magnetism of \(Fe_{n}\) clusters \((n=1-9)\) supported on a Pd(001) substrate. Phys. Rev. B 76, 094420 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    S. Bornemann, J. Minár, J.B. Staunton, J. Honolka, A. Enders, K. Kern, H. Ebert, Magnetic anisotropy of deposited transition metal clusters. Eur. Phys. J. D 45, 529 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    B. Nonas, I. Cabria, R. Zeller, P.H. Dederichs, T. Huhne, H. Ebert, Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface. Phys. Rev. Lett. 86, 2146 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    G.M. Pastor, J. Dorantes-Dávila, S. Pick, H. Dreyssé, Magnetic anisotropy of \(3d\) transition-metal clusters. Phys. Rev. Lett. 75, 326 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    R.A. Guirado-López, J.M. Montejano-Carrizales, Orbital magnetism and magnetic anisotropy energy of Co nanoparticles: role of polytetrahedral packing, polycrystallinity, and internal defects. Phys. Rev. B 75, 184435 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    L. Fernández-Seivane, J. Ferrer, Magnetic anisotropies of late transition metal atomic clusters. Phys. Rev. Lett. 99, 183401 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    P. Błonski, J. Hafner, Magnetic anisotropy of transition-metal dimers: density functional calculations. Phys. Rev. B 79, 224418 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    T.O. Strandberg, C.M. Canali, A.H. MacDonald, Transition-metal dimers and physical limits on magnetic anisotropy. Nat. Mater. 6, 648 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    D. Fritsch, K. Koepernik, M. Richter, H. Eschrig, Transition metal dimers as potential molecular magnets: a challenge to computational chemistry. J. Comp. Chem. 29, 2210 (2008)CrossRefGoogle Scholar
  65. 65.
    J. Kortus, T. Baruah, M.R. Pederson, Magnetic moment and anisotropy in Fe\(_n\)Co\(_m\) clusters. Appl. Phys. Lett. 80, 4193 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    J. Hong, R.Q. Wu, First principles determinations of magnetic anisotropy energy of Co nanoclusters. J. Appl. Phys. 93, 8764 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    J.H. van Vleck, On the anisotropy of cubic ferromagnetic crystals. Phys. Rev. B 52, 1178 (1937)ADSzbMATHCrossRefGoogle Scholar
  68. 68.
    S. Sahoo, A. Hucht, M.E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, D. Fritsch, S. Sil, Magnetic properties of small Pt-capped Fe, Co., and Ni clusters: a density functional theory study. Phys. Rev. B 82, 054418 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    L. Néel, The surface anisotropy of ferromagnetic substances. C. R. Acad. Sci. Paris 237, 1468 (1953)zbMATHGoogle Scholar
  70. 70.
    L. Néel, Surface magnetic anisotropy and orientational superstructures. J. Phys. Radium 15, 225 (1954)zbMATHCrossRefGoogle Scholar
  71. 71.
    S.V. Halilov, A. Ya, Perlov, P. M. Oppeneer, A. N. Yaresko, and V. N. Antonov, Magnetocrystalline anisotropy energy in cubic Fe, Co., and Ni: applicability of local-spin-density theory reexamined. Phys. Rev. B 57, 9557 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    M.A. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner, P. Entel, Understanding the phase transitions of the Ni\(_2\)MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 102, 035702 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    S.I. Sanchez, L.D. Menard, A. Bram, J.H. Kang, M.W. Small, R.G. Nuzzo, A.I. Frenkel, The Emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on \(\gamma \)-Al\(_2\)O\(_3\). J. Am. Chem. Soc. 131, 7040 (2009)CrossRefGoogle Scholar
  74. 74.
    B. Roldan Cuenya, A.I. Frenkel, S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, Q. Wang, Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles. Phys. Rev. B 82, 155450 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sanjubala Sahoo
    • 1
  • Markus E. Gruner
    • 1
  • Alfred Hucht
    • 1
  • Georg Rollmann
    • 1
  • Peter Entel
    • 1
  1. 1.Faculty of Physics and Center for Nanointegration CENIDEUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations