Advertisement

Gas Sensors Based on Well-Defined Nanostructured Thin Films

  • A. Nedic
  • F. E. Kruis
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The ability to prepare nanoparticles having well-defined size and narrow size distribution is an important advantage for optimising and understanding nanoparticulate gas sensors. It allows to monitor the size effect of SnO\(_{2}\) particles as well as that of the addition of the noble metal particles on sensing behaviour. The synthesis of monodisperse SnOx, Pd and Ag nanoparticles and the development the thin films deposition technology as well as suitable microchip platforms are described. Sensing results of SnO\(_{x}\):M mixed nanoparticle layers are presented, especially the effects of operating temperature, particle size, type of noble metal additive and electrode distance are investigated. Sensor to sensor reproducibility as well as long-term stability is investigated. Finally, pure Pd nanoparticle layers are demonstrated to show concentration-specific H\(_{2}\) sensing at room temperature.

Keywords

Propane Concentration Mach Disc Electrode Distance Scanning Mobility Particle Sizer Differential Mobility Analyser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)CrossRefGoogle Scholar
  2. 2.
    P.T. Moseley, B.C. Tofield (eds.), Solid State Gas Sensors (Adam Hilger, Bristol, 1987)Google Scholar
  3. 3.
    K. Ihokura, J. Watson. The Stannic Oxide Gas Sensor—Principles and Applications (CRC Press, Boca Raton, 1994)Google Scholar
  4. 4.
    M.J. Madou, S.R. Morrison, Chemical Sensing with Sold State Devices (Academic Press, New York, 1989)Google Scholar
  5. 5.
    K. Ihokura, Application of sintered tin (IV) oxide for gas detector, NTG—Fachberichte. 79, 312–317 (1982)Google Scholar
  6. 6.
    L.I. Poopova, M.G. Michailov, V.K. Gueorguiev, Structrue and morphology of thin SnO\(_{2}\) films. Thin Solid Films 186, 107–112 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nicoletti, L. Dori, G. Cardinali and A. Parisini, Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped \({\rm SnO}_{2}\). Thin sensing films deposited by the pulsed laser ablation. Sens. Actuators B 60, 90–96 (1999)Google Scholar
  8. 8.
    J. Zhang, L. Gao, J. Solid State Chem. 177, 1425 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Morrison, Mechanism of semiconductor gas sensor operation. Sens. Actuators 11, 283–7 (1987)CrossRefGoogle Scholar
  10. 10.
    P. Nelli, G. Faglia, G. Sberveglieri, E. Cereda, G. Gabetta, A. Dieguez, A. Romano-Rodriguez, J.R. Morante, The aging effect on \({\rm SnO}_{2}\)-Au thin film sensors: electrical and structural characterization. Thin Solid Films 371, 249–253 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    N. Yamazoe, Y. Kurokawa, T. Seiyama, Effects of additives on semiconductor gas sensors. Sens. Actuators 4, 283–289 (1983)CrossRefGoogle Scholar
  12. 12.
    N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5, 7–19 (1991)CrossRefGoogle Scholar
  13. 13.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Stabilization od \({\rm SnO}_{2}\) ultrafine particles by additives. J. Mater. Sci. 27, 963–971 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    R. Ramamoorthy, M.K. Kennedy, H. Nienhaus, A. Lorke, F.E. Kruis, H. Fissan, Surface oxidation of monodisperse \(SnO_{x}\) nanoparticles. Sens. Actuators B 88, 281–285 (2003)CrossRefGoogle Scholar
  15. 15.
    M. I. Ivanovskaya, P.A. Bogdanov, D.R. Orlik, A.Ch. Gurlo, V.V. Romanovskaya, Structure and properties of sol–gel obtained \(SnO_{2}\) and \(SnO_{2}\)-Pd films. Thin Solid Films. 296, 41–43 (1997)Google Scholar
  16. 16.
    S. Harbeck, A. Szatvanyi, N. Barsan, U. Weimar, V. Foffmann, DRIFT studies of thick film un-doped and Pd-doped \(SnO_{2}\) sensors: temperature changes effect and CO detection mechanism in the presence of water vapour. Thin Solid Films 436, 76–83 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    R. K. Joshi, F. E. Kruis, O. Dmitrieva, Gas sensing behavior of \(SnO_{1.8}\): Ag films composed of size-selected nanoparticles, J. Nanoparticle Res. 8, 797–808 (2006)Google Scholar
  18. 18.
    R. K. Joshi, F. E. Kruis, Size-Selected \(SnO_{1.8}\): Ag Mixed nanoparticle films for ethanol, CO and CH\(_{4}\) detection, J. Nanomaterials ID67072 (2007)Google Scholar
  19. 19.
    H. Nienhaus, V. Kravets, S. Koutouzov, C. Meier, A. Lorke, H. Wiggers, M. K. Kennedy, F. E. Kruis, Quantum size effect of valence band plasmon energies in Si and \(SnO_{x}\) nanoparticles. J Vac. Sci. Technol. B 24, 1156 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Biswas, R.C. Flagan, High-velocity inertial impactors. Environ. Sci. Technol. 18, 611–616 (1984)CrossRefGoogle Scholar
  21. 21.
    M.K. Kennedy, F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert, G. Dumpich, Tailored Nanoparticle Films from Monosized Tin Oxide Nanocrystals: Particle Synthesis, Film Formation, and Size-dependent Gas-sensing Properties, J. Applied Physics, 93, pp. 551–560, (2003)Google Scholar
  22. 22.
    M. K. Kennedy, F. E. Kruis, H.Fissan, and B. R. Mehta, Fully Automated, Gas Sensing, and Electronic Parameter Measurement Setup for Miniaturized Nanoparticle Gas Sensors. Rev. Sci. Instrum. 74(11), 4908–15 (2003)Google Scholar
  23. 23.
    W.S. Hu, Z.G. Liu, J.G. Zheng, X.B. Hu, X.L. Guo, Preparation of nanocrystalline SnO\(_{2}\) thin films used in chemisorption sensors by pulsed laser reactive ablation, J. of Materials Science: Materials in. Electronics 8, 155–158 (1997)Google Scholar
  24. 24.
    R. Dolbec, M.A. El Khakani, Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO\(_{2}\): Pt based sensors. Appl. Phys. Lett. 90(17), 173114 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    R. Dolbec, M.A. El Khakani, Pulsed laser deposited platinum and gold nanoparticles as catalysts for enhancing the CO sensitivity of nanostructured \({\rm SnO}_{2}\) sensors. Sens. Lett. 3, 216–221 (2005)CrossRefGoogle Scholar
  26. 26.
    N. Barsan, U. Weimar, Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics 7, 143–167 (2001)CrossRefGoogle Scholar
  27. 27.
    M. Khanuja, S. Kala, B. R. Mehta, F. E. Kruis, Concentration-specific hydrogen sensing behavior in monosized Pd nanoparticle layers, Nanotechnology, 20, 015502 (7 pp) (2009)Google Scholar
  28. 28.
    G. Heiland, Homogeneous semiconducting gas sensors. Sens. Actuators 2, 434–361 (1982)Google Scholar
  29. 29.
    J. Watson, K. Ihokura, Coles G.S.V, The tin oxide gas sensor, Measurement Sci. Technol. 4(7), 711–719 (1993)Google Scholar
  30. 30.
    R.K. Joshi, F.E. Kruis, Influence of Ag particle size on ethanol sansing of \({\rm SnO}_{1.8}\): Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl. Phys. Lett. 89, 153116 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO\(_{2}\)-based elements. Sens. Actuators B 3, 147–155 (1991)CrossRefGoogle Scholar
  32. 32.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Correlation between Gas Sensitivity and Crystallite Size in Porous \(SnO_{2}\)-Based Sensors, Chem. Lett. 441–444 (1990)Google Scholar
  33. 33.
    N. Barsan, Conduction models in gas-sensing SnO\(_{2}\) layers: grain-size effects and ambient atmosphere influence. Sens. Actuators B 17, 241–246 (1994)CrossRefGoogle Scholar
  34. 34.
    B. Gautheron, M. Labeau, G. Delabouglise, U. Schmatz, Undoped and Pd-doped SnO\(_{2}\) thin films for gas sensors. Sens. Actuators B 15–16, 357–362 (1993)CrossRefGoogle Scholar
  35. 35.
    G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 80, 125–131 (2001)CrossRefGoogle Scholar
  36. 36.
    J. Tamaki, Y. Nakataya, S. Konishi, Micro gap effect on dilute \({\rm H}_{2}\)S sensing properties on \({\rm SnO}_{2}\) thin film microsensors. Sens. Actuators B 130, 400–404 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Prost, F.E. Kruis, F. Otten, K. Nielsch, B. Rellinghaus, U. Auer, A. Peled, E.F. Wassermann, H. Fissan, F.J. Tegude, Microelectron. Eng. 41–42, 535 (1998)CrossRefGoogle Scholar
  38. 38.
    Y.-J. Lin, C.-L. Tsai, J. Appl. Phys. 100, 113721 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    I. Aruna, F.E. Kruis, S. Kundu, M. Muhler, R. Theissmann, M. Spasova, CO ppb sensors based on monodispersed SnO\(_{x}\):Pd mixed nanoparticle layers: Insight into dual conductance response. J. Appl. Phys. 105, 064312 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    I. Aruna, F. E. Kruis, Temperature dependent sensitivity inversion in SnO1.8: Pd mixed nanoparticle layer based CO sensors, Mater. Res. Soc. Symp. Proc. 1056, HH04-11Google Scholar
  41. 41.
    F. A. Lewis, The Palladium-Hydrogen System (Academic Press, London, 1967)Google Scholar
  42. 42.
    J.B. Pelka, M. Brust, P. Glertowski, W. Paszkowicz, N. Schell, Appl. Phys. Lettt. 89, 063110 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Nedic
    • 1
  • F. E. Kruis
    • 1
  1. 1.Faculty of Engineering and CENIDEUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations