Skip to main content

Abstract

The two-terminal reliability problem has been a widely studied issue since 1970s. Therefore many efficient algorithms were proposed. Nevertheless, all these algorithms imply that all system components must be independent. With regard to nowadays applications it is not sufficient to assume independent component failures because in fault tolerant systems components may fail due to common cause failures or fault propagation. We therefore propose an algorithm which deals with upcoming dependencies. In addition to that, lower and upper bounds can be obtained in case the algorithm cannot be conducted until the end. The performance and accuracy of the algorithm is demonstrated on a certain network obeying a recursive structure where the exact result is given by a polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satyanarayana, A., Chang, M.K.: Network reliability and the factoring theorem. Networks 13(1), 107–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tanguy, C.: Asymptotic mean time to failure and higher moments for large, recursive networks. In: CoRR (2008)

    Google Scholar 

  3. Torrieri, D.: Calculation of node-pair reliability in large networks with unreliable nodes. IEEE Trans. Reliability 43(3), 375–377 (1994)

    Article  Google Scholar 

  4. Yeh, F.M., Lu, S.K., Kuo, S.Y.: Determining terminal-pair reliability based on edge expansion diagrams using obdd. IEEE Trans. Reliability 48(3), 234–246 (1999)

    Article  Google Scholar 

  5. Hardy, G., Lucet, C., Limnios, N.: K terminal network reliability measures with binary decision diagrams. IEEE Trans. Reliability 56(3), 506–515 (2007)

    Article  Google Scholar 

  6. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  7. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theoretical Computer Science Archive 274(1-2), 43–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dugan, J.B., Venkataraman, B., Gulati, R.: Diftree: a software package for the analysis of dynamic fault tree models. In: RAMS (1997)

    Google Scholar 

  9. Sullivan, K.J., Coppit, D.: Galileo: A tool built from mass-market applications. In: ICSE (2000)

    Google Scholar 

  10. Wood, K.: A factoring algorithm using polygon-to-chain reductions for computing k-terminal network reliability. Networks 15(2), 173–190 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with generalized stochastic Petri nets. John Wiley & Sons (1995)

    Google Scholar 

  12. Kuntz, M., Siegle, M., Werner, E.: Caspa - a tool for symbolic performance and dependability evaluation. In: EPEW (FORTE Co-located Workshop), pp. 293–307 (2004)

    Google Scholar 

  13. Lê, M., Walter, M.: Considering dependent components in the terminal pair reliability problem. In: DYADEM-FTS 2011, pp. 415–422 (2011)

    Google Scholar 

  14. Pock, M., Walter, M.: Efficient extraction of the structure formula from reliability block diagrams with dependent basic events. Journal of Risk and Reliability 222(3), 393–402 (2008)

    Google Scholar 

  15. Walter, M., Gouberman, A., Riedl, M., Schuster, J., Siegle, M.: LARES - A Novel Approach for Describing System Reconfigurability in Dependability Models of Fault-Tolerant Systems. In: ESREL (2009)

    Google Scholar 

  16. Walter, M., Esch, S., Limbourg, P.: A copula-based approach for dependability analyses of fault-tolerant systems with interdependent basic events. In: ESREL, pp. 1705–1714 (2008)

    Google Scholar 

  17. Deo, N., Medidi, M.: Parallel algorithms for terminal pair reliability. IEEE Trans. Reliability 41(2), 201–209 (1992)

    Article  MATH  Google Scholar 

  18. Theologou, O.R., Carlier, J.G.: Factoring and reductions for networks with imperfect vertices. IEEE Trans. Reliability 40(2), 210–217 (1991)

    Article  MATH  Google Scholar 

  19. Nelsen, R.B.: An Introduction to Copulas. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  20. Sahner, R., Trivedi, K., Puliafito, A.: Performance and Reliability Analysis of Computer Systems. Kluwer Academic Publishers (1996)

    Google Scholar 

  21. Hsu, S.J., Yuang, M.C.: Efficient computation of terminal-pair reliability using triangle reduction in network management. ICC on Communications 1, 281–285 (1998)

    Google Scholar 

  22. Dotson, W.P., Gobein, J.: A new analysis technique for probabilistic graphs. IEEE Trans. Circuit & Systems 26(10), 855–865 (1979)

    Article  MathSciNet  Google Scholar 

  23. Chen, Y.G., Yuang, M.C.: A cut-based method for terminal-pair reliability. IEEE Trans. Reliability 45(3), 413–416 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lê, M., Walter, M. (2012). Bounds for Two-Terminal Network Reliability with Dependent Basic Events. In: Schmitt, J.B. (eds) Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance. MMB&DFT 2012. Lecture Notes in Computer Science, vol 7201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28540-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28540-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28539-4

  • Online ISBN: 978-3-642-28540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics