Advertisement

Simulative and Analytical Evaluation for ASD-Based Embedded Software

  • Ramin Sadre
  • Anne Remke
  • Sjors Hettinga
  • Boudewijn Haverkort
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7201)

Abstract

The Analytical Software Design (ASD) method of the company Verum has been designed to reduce the number of errors in embedded software. However, it does not take performance issues into account, which can also have a major impact on the duration of software development. This paper presents a discrete-event simulator for the performance evaluation of ASD-structured software as well as a compositional numerical analysis method using fixed-point iteration and phase-type distribution fitting. Whereas the numerical analysis is highly accurate for non-interfering tasks, its accuracy degrades when tasks run in opposite directions through interdependent software blocks and the utilization increases. A thorough validation identifies the underlying problems when analyzing the performance of embedded software.

Keywords

Service Time Arrival Rate Wait Time Distribution Embed Software Queueing Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet: Some experiences of formal methods in practice. In: 10th Asia-Pacific Software Engineering Conference (APSEC 2003), pp. 49–58 (2003)Google Scholar
  3. 3.
    Chakraborty, S., Künzli, S., Thiele, L.: A general framework for analysing system properties in platform-based embedded system designs. In: DATE (2003)Google Scholar
  4. 4.
    Cobham, A.: Priority assignment in waiting line problems. Operations Research 2(1), 70–76 (1954)Google Scholar
  5. 5.
    Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced Modeling and Solution of Layered Queueing Networks. Transactions on Software Engineering 35(2), 148–161 (2009)CrossRefGoogle Scholar
  6. 6.
    Grossglauser, M., Bolot, J.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Transactions on Networking 7(5), 629–640 (1999)CrossRefGoogle Scholar
  7. 7.
    Haverkort, B.: Approximate Analysis of Networks of PH|PH|1|K Queues: Theory & Tool Support. In: Beilner, H., Bause, F. (eds.) MMB 1995 and TOOLS 1995. LNCS, vol. 977, pp. 239–253. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Heindl, A.: Decomposition of general queueing networks with MMPP inputs and customer losses. Performance Evaluation 51(2-4), 117–136 (2003)CrossRefGoogle Scholar
  9. 9.
    Hettinga, S.: Performance Analysis for Embedded Software Design. Master’s thesis, University of Twente (2010)Google Scholar
  10. 10.
    Jouini, O., Dallery, Y.: Moments of first passage times in general birth-death processes. Mathematical Methods of Operations Research 68, 49–76 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Klink, D., Remke, A., Haverkort, B., Katoen, J.P.: Time-bounded reachability in tree-structured QBDs by abstraction. Performance Evaluation 68, 105–125 (2011)CrossRefGoogle Scholar
  12. 12.
    Latouche, G., Ramaswami, V.: A logarithmic reduction algorithm for quasi birth and death processes. Journal of Applied Probability 30, 650–674 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Neuts, M.: Matrix-Geometric Solutions in Stochastic Models — An Algorithmic Approach. Dover Publications, Inc. (1981)Google Scholar
  14. 14.
    Osogami, T., Harchol-Balter, M.: A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 200–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Rolia, J., Sevcik, K.: The Method of Layers. Transactions on Software Engineering 21(8), 689–700 (1995)CrossRefGoogle Scholar
  16. 16.
    Sadre, R.: Decomposition-Based Analysis of Queueing Networks. Ph.D. thesis, University of Twente (2006)Google Scholar
  17. 17.
    Sadre, R., Haverkort, B.: FiFiQueues: Fixed-Point Analysis of Queueing Networks with Finite-Buffer Stations. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 324–327. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Sadre, R., Haverkort, B.: Decomposition-Based Queueing Network Analysis with FiFiQueues. In: Queueing Networks: A Fundamental Approach. International Series in Operations Research & Management Science, vol. 154, pp. 643–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Verum (2010), http://www.verum.com
  20. 20.
    Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation using modular performance analysis: a case study. International Journal on Software Tools for Technology Transfer 8(6), 649–667 (2006)CrossRefGoogle Scholar
  21. 21.
    Whitt, W.: The Queueing Network Analyzer. The Bell System Technical Journal 62(9), 2779–2815 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ramin Sadre
    • 1
  • Anne Remke
    • 1
  • Sjors Hettinga
    • 2
  • Boudewijn Haverkort
    • 1
  1. 1.Design and Analysis of Communication SystemsUniversity of TwenteThe Netherlands
  2. 2.Embedded Systems InstituteEindhovenThe Netherlands

Personalised recommendations