Abstract

Extending Communicating Sequential Processes (CSP) by preserving the distributivity laws for internal choice, in the presence of probabilistic choice, has been an open problem so far. The problem stems from a well known disagreement between probabilistic choice and nondeterministic choice, that raises congruence issues for parallel composition. Recently, it has been argued that the congruence issue can be resolved only by restricting the power of the schedulers that resolve the nondeterminism. In our previous work, we have restricted the schedulers by suitably labeling the nondeterministic transitions. We have defined a ready-trace equivalence and a parallel composition with hiding for which the equivalence is a congruence. In this paper, we generalize our model and give a CSP-style axiomatic characterization of the ready-trace equivalence. From the axiomatization it follows that all distributivity axioms for internal choice from CSP are preserved, and no new axioms are added.

Keywords

Normal Form Internal Transition Probabilistic Choice Parallel Composition Communicate Sequential Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in probabilistic concurrent systems. Theor. Comp. Sc. 412(28), 3072–3089 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Ready-trace semantics for concrete process algebra with the priority operator. The Comp. Journal 30(6), 498–506 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of ACM 31(3), 560–599 (1984)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.: Constraint markov chains. Theor. Comp. Sc. 412(34), 4373–4404 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. Information and Computation 208(6), 694–715 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel composition via distributed scheduling. Theor. Comp. Sc. 365(1-2), 83–108 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    de Alfaro, L., Henzinger, T., Jhala, R.: Compositional Methods for Probabilistic Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 351–365. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Comp. Sc. 4(4:4), 1–33 (2008)MathSciNetMATHGoogle Scholar
  9. 9.
    Doob, J.L.: Stochastic Processes. John Wiley and Sons, New York (1953)MATHGoogle Scholar
  10. 10.
    Georgievska, S.: Probability and Hiding in Concurrent Processes. PhD thesis, Eindhoven University of Technology (2011)Google Scholar
  11. 11.
    Georgievska, S., Andova, S.: Composing Systems While Preserving Probabilities. In: Aldini, A., Bernardo, M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 268–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Georgievska, S., Andova, S.: Retaining the Probabilities in Probabilistic Testing Theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 79–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Georgievska, S., Andova, S.: Probabilistic CSP: Preserving the laws via restricted schedulers. Technical Report (2011), http://www.win.tue.nl/~sgeorgie/axioms2011_long.pdf
  14. 14.
    Giro, S., D’Argenio, P.: On the expressive power of schedulers in distributed probabilistic systems. In: QAPL 2009. ENTCS, vol. 253(3), pp. 45–71 (2009)Google Scholar
  15. 15.
    Giro, S., D’Argenio, P., Ferrer Fioriti, L.M.: Partial Order Reduction for Probabilistic Systems: A Revision for Distributed Schedulers. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Giro, S., D’Argenio, P.R.: Quantitative Model Checking Revisited: Neither Decidable Nor Approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gomez, F.C., De Frutos Escrig, D., Ruiz, V.V.: A Sound and Complete Proof System for Probabilistic Processes. In: Rus, T., Bertrán, M. (eds.) AMAST-ARTS 1997, ARTS 1997, and AMAST-WS 1997. LNCS, vol. 1231, pp. 340–352. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  19. 19.
    Kwiatkowska, M., Norman, G.: A testing equivalence for reactive probabilistic processes. In: EXPRESS 1998. ENTCS, vol. 16(2), pp. 1–19 (1998)Google Scholar
  20. 20.
    Kwiatkowska, M.Z., Norman, G.J.: A fully abstract metric-space denotational semantics for reactive probabilistic processes. In: COMPROX 1998. ENTCS, vol. 13, pp. 1–33 (1998)Google Scholar
  21. 21.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lindley, D.V.: Introduction to Probability and Statistics from a Bayesian Viewpoint. Cambridge University Press (1980)Google Scholar
  23. 23.
    Lowe, G.: Representing nondeterministic and probabilistic behaviour in reactive processes. Technical Report PRG-TR-11-93, Oxford University Computing Labs (1993)Google Scholar
  24. 24.
    Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)CrossRefMATHGoogle Scholar
  25. 25.
    Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability for CSP. Formal Aspects of Computing 8(6), 617–647 (1996)CrossRefMATHGoogle Scholar
  26. 26.
    Pnueli, A.: Linear and Branching Structures in the Semantics and Logics of Reactive Systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  27. 27.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1998)Google Scholar
  28. 28.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-time Systems. PhD thesis, MIT (1995)Google Scholar
  29. 29.
    Seidel, K.: Probabilistic communicating processes. Theor. Comp. Sc. 152, 219–249 (1995)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wang, Y., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proceedings of the IFIP TC6/WG6.1 Twelth International Symposium on Protocol Specification, Testing and Verification XII, pp. 47–61 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sonja Georgievska
    • 1
  • Suzana Andova
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations