Advertisement

Speed Measurements of Residential Internet Access

  • Oana Goga
  • Renata Teixeira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7192)

Abstract

The spread of residential broadband Internet access is raising the question of how to measure Internet speed. We argue that available bandwidth is a key metric of access link speed. Unfortunately, the performance of available bandwidth estimation tools has rarely been tested from hosts connected to residential networks. This paper compares the accuracy and overhead of state-of-the-art available bandwidth estimation tools from hosts connected to commercial ADSL and cable networks. Our results show that, when using default settings, some tools underestimate the available bandwidth by more than 60%. We demonstrate using controlled testbeds that this happens because current home gateways have a limited packet forwarding rate.

Keywords

Packet Size Access Router Access Link Local Loop Small Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Altman, E., Barman, D., Tuffin, B., Vojnovic, M.: Parallel TCP sockets: Simple model, throughput and validation. In: Proc. IEEE INFOCOM (2006)Google Scholar
  3. 3.
    Angrisani, L., D’Antonio, S., Esposito, M., Vadursi, M.: Techniques for available bandwidth measurement in IP networks: a performance comparison. Computer Networks 50(3) (2006)Google Scholar
  4. 4.
    Bauer, S., Clark, D., Lehr, W.: Understanding broadband speed measurements. MITAS project white paper (2010)Google Scholar
  5. 5.
    Croce, D., En Najjary, T., Urvoy Keller, G., Biersack, E.W.: Non-cooperative available bandwidth estimation towards ADSL links. In: The 11th Global Internet Symposium on IEEE INFOCOM Workshops 2008 (2008)Google Scholar
  6. 6.
    Croce, D., En-Najjary, T., Urvoy-Keller, G., Biersack, E.W.: Fast Available Bandwidth Sampling for ADSI Links: Rethinking the Estimation for Larger-Scale Measurements. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 67–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing Residential Broadband Networks. In: IMC (2007)Google Scholar
  8. 8.
    Goldoni, E., Schivi, M.: End-to-end available bandwidth estimation tools, an experimental comparison. In: Proc. Traffic Monitoring and Analysis Workshop (2010)Google Scholar
  9. 9.
    Guerrero, C.D., Labrador, M.A.: On the applicability of available bandwidth estimation techniques and tools. Computer Communications 33(1) (2010)Google Scholar
  10. 10.
    Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S., Sarolahti, P., Kojo, M.: An experimental study of home gateway characteristics. In: IMC (2010)Google Scholar
  11. 11.
    Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth probing techniques. IEEE J. Selected Areas in Communications 21(6) (2003)Google Scholar
  12. 12.
    Jacobson, V., Braden, R., Borman, D.: A Framework for Defining Empirical Bulk Transfer Capacity Metrics Status of this Memo. RFC 3148 (2001)Google Scholar
  13. 13.
    Jain, M., Dovrolis, C.: End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput. In: Proc. ACM SIGCOMM (2002)Google Scholar
  14. 14.
    Jin, G., Tierney, B.L.: System capability effects on algorithms for network bandwidth measurement. In: IMC (2003)Google Scholar
  15. 15.
    Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating the edge network. In: IMC (2010)Google Scholar
  16. 16.
    Lakshminarayanan, K., Padmanabhan, V.N., Padhye, J.: Bandwidth estimation in broadband access networks. In: IMC (2004)Google Scholar
  17. 17.
    Lao, L., Dovrolis, C., Sanadidi, M.Y.: The probe gap model can underestimate the available bandwidth of multihop paths. ACM CCR 36(5) (2006)Google Scholar
  18. 18.
    Liu, X., Ravindran, K., Loguinov, D.: Multi-hop probing asymptotics in available bandwidth estimation: stochastic analysis. In: IMC (2005)Google Scholar
  19. 19.
    Shriram, A., Murray, M., Hyun, Y., Brownlee, N., Broido, A., Fomenkov, M., Claffy, K.: Comparison of Public End-to-End Bandwidth Estimation Tools on High-Speed Links. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 306–320. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics, measurement techniques, and tools. IEEE Network Magazine 17(6) (2003)Google Scholar
  21. 21.
    Prasad, R., Jain, M., Dovrolis, C.: Effects of Interrupt Coalescence on Network Measurements. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 247–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navratil, J., Cottrell, L.: pathChirp: Efficient available bandwidth estimation for network paths. In: PAM (2003)Google Scholar
  23. 23.
    Shriram, A., Kaur, J.: Empirical evaluation of techniques for measuring available bandwidth. In: Proc. IEEE INFOCOM (2007)Google Scholar
  24. 24.
    Sommers, J., Barford, P., Willinger, W.: Laboratory-based calibration of available bandwidth estimation tools. Microprocessors and Microsystems Journal 31 (2007)Google Scholar
  25. 25.
    Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: IMC (2003)Google Scholar
  26. 26.
    Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broadband internet performance: A view from the gateway. In: Proc. ACM SIGCOMM (2011)Google Scholar
  27. 27.
    Urvoy-Keller, G., En-Najjary, T., Sorniotti, A.: Operational comparison of available bandwidth estimation tools. ACM CCR 38(1) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oana Goga
    • 1
  • Renata Teixeira
    • 1
  1. 1.CNRS and UPMC Sorbonne UniversitésParisFrance

Personalised recommendations