Advertisement

Information in Polarimetry

  • Matthew R. Foreman
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Polarimetry is the study and measurement of the polarisation state of light and is a popular and useful tool in science today. Applications vary from astronomy, microscopy and biomedical diagnosis [59, 65] to more fundamental crystallographic, material and single molecule studies [20, 74]. Polarisation can also be utilised in quantum cryptography and communication [73]. Although measurement of the state of polarisation of light is often an important objective [29, 78] such polarimetric techniques are also frequently used to obtain information about an optical system, such as its birefringence [13]. One may then subdivide polarimetry into two broad categories: Stokes polarimetry and Mueller polarimetry. The former entails measuring the four Stokes parameters of light, whilst the latter is intended to measure the full Mueller matrix of a sample from which parameters of interest can then be inferred.

Keywords

Polarisation State Polarisation Resolution Fisher Information Channel Capacity Matched Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Ambirajan, D.C. Look, Optimum angles for a polarimeter. Opt. Eng. 34, 1651–1658 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    R.M.A. Azzam, N.M. Bashara, Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. J. Mod. Opt. 29, 685–689 (1982)Google Scholar
  3. 3.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarised Light (North Holland, Amsterdam, 1987)Google Scholar
  4. 4.
    R.M.A. Azzam, F.F. Sudradjat, Single-layer-coated beam splitters for the division-of-amplitude photopolarimeter. Appl. Opt. 44, 190–196 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    H.H. Barrett, J.L. Denny, R.F. Wagner, K.J. Myers, Objective assessment of image quality. II: Fisher information, Fourier crosstalk, and figures of merit for task performance. J. Opt. Soc. Am. A 12, 834–852 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    A. Bénière, F. Goudail, M. Alouini, D. Dolfi, Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises. J. Eur. Opt. Soc. Rap. Publ. 3, 08002 (2008)CrossRefGoogle Scholar
  7. 7.
    S.L. Braunstein, Quantum limits in precision measurement of phase. Phys. Rev. Lett. 69, 3598–3601 (1992)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    L. Brillioun, Maxwell’s demon cannot operate: information and entropy I. J. Appl. Phys. 22, 334–337 (1950)ADSCrossRefGoogle Scholar
  9. 9.
    L. Brillioun, Physical entropy and information II. J. Appl. Phys. 22, 338–343 (1950)ADSCrossRefGoogle Scholar
  10. 10.
    L. Brillioun, The negentropy principle of information. J. Appl. Phys 24, 1152–1163 (1953)ADSCrossRefGoogle Scholar
  11. 11.
    L. Brillioun, Science and Information Theory (Academic Press Inc., New York, 1956)Google Scholar
  12. 12.
    J.M. Bueno, Depolarization effects in the human eye. Vis. Res. 41, 2687–2696 (2001)CrossRefGoogle Scholar
  13. 13.
    R.A. Chipman, Handbook of Optics, vol 2 (McGraw Hill, New York, 1995)Google Scholar
  14. 14.
    E. Collett, Automatic determination of the polarization state of nanosecond laser pulses. U.S. Patent 4158506, 1979Google Scholar
  15. 15.
    E. Compain, B. Drevillon, Broadband division-of-amplitude-polarimeter based on uncoated prisms. Appl. Opt. 37, 5938–5944 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Correas, P.A. Melero, J.J. Gil, Decomposition of Mueller matrices into pure optical media. Monografás del Seminario Matemaático Garcá de Galdeano 27, 233–240 (2003)MathSciNetGoogle Scholar
  17. 17.
    I.J. Cox, C.J.R. Sheppard, Information capacity and resolution in an optical system. J. Opt. Soc. Am. A 3(8), 1152–1158 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    A. De Martino, E. Garcia-Caurel, B. Laude, B. Drévillon, General methods for optimized design and calibration of Mueller polarimeters. Thin Solid Films 455–456, 112–119 (2004)CrossRefGoogle Scholar
  19. 19.
    V. Delaubert, N. Treps, C. Fabre, A. Maître, H.A. Bachor, P. Réfrégier, Quantum limits in image processing. Europhys. Lett. 81, 44001 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Ellis, A. Dogariu, Optical polarimetry of random fields. Phys. Rev. Lett. 95, 203905 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S.G. Evangelides, L.F. Mollenauer, J.P. Gordon, N.S. Bergano, Polarization multiplexing with solitons. J. Lightwave Technol. 10, 28–35 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    P.B. Fellgett, E.H. Linfoot, On the assessment of optical images. Philos. Trans. Roy. Soc. Lond. A 247, 369–407 (1955)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    M. Floc’h, G. Le Brun, J. Cariou, J. Lotrian, Experimental characterization of immersed targets by polar decomposition of the Mueller matrices. Eur. Phys. J. Appl. Phys. 3, 349–358 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    M.R. Foreman, C. Macías Romero, P.Török, A priori information and optimisation in polarimetry. Opt. Express 16, 15212–15227 (2008)Google Scholar
  25. 25.
    M.R. Foreman, S.S. Sherif, P. Török, Photon statistics in single molecule orientational imaging. Opt. Express 15, 13597–13606 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    B.R. Frieden, Maximum information data processing: application to optical signals. J. Opt. Soc. Am. 71, 294–303 (1981)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    B.R. Frieden, Physics from Fisher Information: A Unification (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  28. 28.
    D. Gabor, Theory of communication. J. IEE 93, 429–457 (1946)Google Scholar
  29. 29.
    T. Gehrels (ed.), Planets Stars and Nebulae Studied with Photopolarimetry (University of Arizona Press, Tuscon, 1974)Google Scholar
  30. 30.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw Hill, New York, 1996)Google Scholar
  31. 31.
    U. Gopinathan, T.J. Naughton, J.T. Sheridan, Polarization encoding and multiplexing of two-dimensional signals: application to image encryption. Appl. Opt. 45, 5693–5700 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    F. Goudail, Optimization of the contrast in active Stokes images. Opt. Lett. 34, 121–124 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    F. Goudail, A. Bénière, Optimization of the contrast in polarimetric scalar images. Opt. Lett. 34, 1471–1473 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    R.V.L. Hartley, Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)Google Scholar
  35. 35.
    Z. Hradil, Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Z. Hradil, J. Řeháček, Quantum measurement and information. Fortschr. Phys. 51, 150–156 (2003)zbMATHCrossRefGoogle Scholar
  37. 37.
    International Organization for Standardization, and European Computer Manufacturers Association (1998) Optical interfaces for multichannel systems with optical amplifiers. ITU-T Recommendation G. 692, International Telecommunication UnionGoogle Scholar
  38. 38.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Inc., London, 1993)zbMATHGoogle Scholar
  39. 39.
    G.E. Keiser, A review of WDM technology and applications. Opt. Fiber Technol. 5(1), 3–39 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    W.D. Koek, N. Bhattacharya, J.J.M. Braat, V.S.S. Chan, J. Westerweel, Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt. Lett. 29, 101–103 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    K. Küpfmüller, Uber einschwingvorgange in Wellen filtern. Elek. Nachrichtentech. 1, 141–152 (1924)Google Scholar
  42. 42.
    D. Lara, C. Paterson, Stokes polarimeter optimization in the presence of shot and Gaussian noise. Opt. Express 17, 21240–21249 (2009)CrossRefGoogle Scholar
  43. 43.
    B. Laude-Boulesteix, A. De Martino, B. Drévillon, L. Schwartz, Mueller polarimetric imaging system with liquid crystals. Appl. Opt. 43, 2824–2832 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    A.W. Lohmann, R.G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, Space-bandwidth product of optical signals and systems. J. Opt. Soc. Am. A 13, 470–473 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    W. Lukosz, Optical systems with resolving powers exceeding the classical limit I. J. Opt. Soc. Am. 56, 1463–1472 (1966)ADSCrossRefGoogle Scholar
  47. 47.
    Macίas Romero, C. High numerical aperture Mueller matrix polarimetry and applications to multiplexed optical data storage. Ph.D. thesis, 2010Google Scholar
  48. 48.
    R. Mehra, Optimal input signals for parameter estimation in dynamic systems-survey and new results. IEEE Trans. Autom. Contr. 19, 753–768 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    D. Mendlovic, A.W. Lohmann, Spacebandwidth product adaptation and its application to superresolution: fundamentals. J. Opt. Soc. Am. A 14, 2488–2493 (1997)MathSciNetGoogle Scholar
  50. 50.
    D.A.B. Miller, Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt. 39, 1681–1699 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    E.H. Moore, On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)Google Scholar
  52. 52.
    J. Morio, F. Goudail, Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices. Opt. Lett. 29, 2234–2236 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    P.R.T. Munro, P. Török, Properties of high-numerical-aperture Mueller-matrix polarimeters. Opt. Lett. 33, 2428–2430 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    S.M. Nee, Error analysis for Mueller matrix measurement. J. Opt. Soc. Am. A 20, 1651–1657 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    M.A. Neifeld, Information, resolution, and space bandwidth product. Opt. Lett. 18, 1477–1479 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    H. Nyquist, Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3, 324–352 (1924)Google Scholar
  57. 57.
    H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617–644 (1928)Google Scholar
  58. 58.
    R.J. Ober, S. Ram, E.S. Ward, Localization accuracy in single-molecule microscopy. Biophys. J. 86(2), 1185–1200 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    R. Oldenbourg, A new view on polarization microscopy. Nature 381, 811–812 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    R. Ossikovski, Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A 26, 1109–1118 (2009)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    R. Penrose, A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. 62.
    R. Piestun, D.A.B. Miller, Electromagnetic degrees of freedom of an optical system. J. Opt. Soc. Am. A 17, 892–902 (2000)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    O. Popescu, C. Rose, D.C. Popescu, Maximising the determinant for a special class of block partitioned matrices. Math. Probl. Eng. 1, 49–61 (2004)MathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Ram, E.S. Ward, R.J. Ober, Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl Acad. Sci. U S A 103, 4457–4462 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    A.C.S. Readhead, S.T. Myers, T.J. Pearson, J.L. Sievers, B.S. Mason, C.R. Contaldi, J.R. Bond, R. Bustos et al., Polarization observations with the cosmic background imager. Science 306, 836–844 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    T.J. Rothenberg, Efficient Estimation with a priori Information (Yale University Press, New Haven, 1973)zbMATHGoogle Scholar
  67. 67.
    B.E.A. Saleh, M.C. Teich, Can the channel capacity of a light wave communication system be increased by the use of photon number squeezed light. Phys. Rev. Lett. 58, 2656–2659 (1987)ADSCrossRefGoogle Scholar
  68. 68.
    B.E.A. Saleh, M.C. Teich, Information transmission with photon-number squeezed light. Proc. IEEE 80(3), 451–460 (1992)CrossRefGoogle Scholar
  69. 69.
    Savenkov, S. Eigenview on Mueller matrix models of homogeneous anisotropic media. In Advanced Polarimetric Instrumentation, Workshop 2009 (December 2009)Google Scholar
  70. 70.
    S.N. Savenkov, Optimization and structuring of the instrument matrix for polarimetric measurements. Opt. Eng. 41, 965–972 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    S.N. Savenkov, K.E. Yushtin, Mueller matrix elements error distribution for polarimetric measurements. Proc. SPIE 5158, 251–259 (2003)ADSCrossRefGoogle Scholar
  72. 72.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  73. 73.
    A. Shields, Quantum optics: quantum logic with light, glass, and mirrors. Science 297, 1821–1822 (2002)CrossRefGoogle Scholar
  74. 74.
    B. Sick, B. Hecht, L. Novotny, Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000)ADSCrossRefGoogle Scholar
  75. 75.
    D. Slepian, Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25, 379–393 (2000)MathSciNetCrossRefGoogle Scholar
  76. 76.
    M. Smith, Optimization of a dual-rotating-retarder Mueller matrix polarimeter. Appl. Opt. 41, 2488–2493 (2002)ADSCrossRefGoogle Scholar
  77. 77.
    L. Szilard, Über die entropieverminderun in einem thermodynamischen system bei eingriffen intelligenter wesen. Z. Phys. 53, 593–604 (1929)Google Scholar
  78. 78.
    J. Tinbergen, Interstellar polarization in the immediate solar neighbourhood. Astron. Astrophys. 105, 53–64 (1982)ADSGoogle Scholar
  79. 79.
    P. Török, M. Salt, E. E. Kriezis, P.R.T. Munro, H.P. Herzig, C. Rockstuhl, Optical disk and reader therefor. Worldwide Patent WO2006/010882, 2006Google Scholar
  80. 80.
    N. Treps, V. Delaubert, A. Maître, J.M. Courty, C. Fabre, Quantum noise in multipixel image processing. Phys. Rev. A 71, 013820 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    J.S. Tyo, Optimum linear combination strategy for an \(n\)-channel polarization sensitive imaging or vision system. J. Opt. Soc. Am. A 15, 359–366 (1998)ADSCrossRefGoogle Scholar
  82. 82.
    J.S. Tyo, Noise equalisation in Stokes parameter images obtained by use of variable-retardance polarimeters. Opt. Lett. 25, 1198–1200 (2000)ADSCrossRefGoogle Scholar
  83. 83.
    J.S. Tyo, Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. Appl. Opt. 41, 619–630 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    A. van der Sluis, Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    A.D. Whalen, Detection of Signals in Noise (Academic Press Inc., New York, 1971)Google Scholar
  86. 86.
    J. Zallat, S. Aïnouz, M.P. Stoll, Optimal configurations for imaging polarimeters: impact of image noise and systematic errors. J. Opt. A: Pure Appl. Opt. 8, 807–814 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations