Vectorial Optics

  • Matthew R. Foreman
Part of the Springer Theses book series (Springer Theses)


Maxwell’s famous set of equations provided a unification of a number of empirical results gathered during the \(19\text{ th}\) century, namely Gauss’ flux theorems, Faraday’s law of induction and Ampère’s circuital law. Collectively these laws describe the properties of electromagnetic fields and their relation to charge and current distributions.


Electric Field Vector Coherent Mode Reference Sphere Spectral Coherence Fresnel Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987)Google Scholar
  2. 2.
    R. Bartholinus, Experimenta Crystalli Islandici Disdiaclastici Quibus Mira and Insolita Refractio Detegitur (Danielis Paulli, Hafniæ, 1669)Google Scholar
  3. 3.
    M.L. Boas, Mathematical Methods in the Physical Sciences, 2nd edn. (Wiley, New York, 1983)Google Scholar
  4. 4.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1980)Google Scholar
  5. 5.
    G. Brooker, Modern Classical Optics (Oxford University Press, Oxford, 2003)zbMATHGoogle Scholar
  6. 6.
    D.P. Brown, A.K. Spilman, T.G. Brown, R. Borghi, S.N. Volkov, E. Wolf, Spatial coherence properties of azimuthally polarized laser modes. Opt. Commun. 281, 5287–5290 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R.A. Chipman, Handbook of Optics, vol. 2 (McGraw Hill, New York, 1995)Google Scholar
  8. 8.
    R.A. Chipman, J.E. Stacy, PMAP: polarization matrix analysis program, COSMIC program NPO-17273 (University of Georgia, Athens, 1983)Google Scholar
  9. 9.
    C.C. Davis, Lasers and Electro-optics—Fundamentals and Engineering (Cambridge University Press, Cambridge, 1996)Google Scholar
  10. 10.
    R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    M. Faraday, On the magnetization of light and the illumination of magnetic lines of force. Philos. Trans. R. Soc. Lond. 1, 104–123 (1846)Google Scholar
  12. 12.
    D. Fischer, T. Visser, Spatial correlation properties of focused partially coherent light. J. Opt. Soc. Am. A 21, 2097–2102 (2004)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S. Flewett, H. Quiney, C. Tran, K. Nugent, Extracting coherent modes from partially coherent wavefields. Opt. Lett. 34, 2198–2200 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M.R. Foreman, P. Török, Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields. J. Opt. Soc. Am. A 26, 2470–2479 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2002)Google Scholar
  16. 16.
    A. Friberg, Partial polarisation and coherence in arbitrary electromagnetic fields. AIP Conf. Proc. 992, 460 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    D. Ganic, X. Gan, M. Gu, Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Opt. Express 11, 2747–2752 (2003)Google Scholar
  18. 18.
    W. Gao, Effects of coherence and vector properties of the light on the resolution limit in stimulated emission depletion fluorescence microscopy. J. Opt. Soc. Am. A 25, 1378–1382 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Gil, Polarimetric characterization of light and media. Eur. Phys. J. Appl. Phys. 40, 1–47 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    D. Goldstein, Polarised Light: Fundamentals and Applications (Marcel Dekker, New York, 2003)Google Scholar
  21. 21.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw Hill, New York, 1996)Google Scholar
  22. 22.
    J.W. Goodman, Statistical Optics (Wiley, New York, 2004)Google Scholar
  23. 23.
    F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, G. Guattari, Coherent-mode decomposition of partially polarized, partially coherent sources. J. Opt. Soc. Am. A 20, 78–84 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    G. Guattari, C. Palma, C. Padovani, Cross-spectral densities with axial symmetry. Opt. Commun. 73, 173–178 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    A. Hardy, D. Treves, Structure of the electromagnetic field near the focus of a stigmatic lens. J. Opt. Soc. Am. 63, 85–90 (1973)ADSCrossRefGoogle Scholar
  26. 26.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    P.D. Higdon, P. Török, T. Wilson, Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes. J. Microsc. 193, 127–141 (1998)CrossRefGoogle Scholar
  28. 28.
    C. Huygens, Traité de la Lumière (Pieter van der Aa, Leyden, 1690) Google Scholar
  29. 29.
    V.S. Ignatowsky, Diffraction by a lens of arbitrary aperture. Trans. Opt. Inst. Pet. 1, 1–36 (1919)Google Scholar
  30. 30.
    D.J. Innes, A.L. Bloom, Design of optical systems for use with laser beams. Spectr. Phys. Laser Tech. Bull. 5, 1–10 (1966)Google Scholar
  31. 31.
    S. Inoué, Studies of depolarisation of light at microscope lens surfaces. II: The origin of stray light by rotation at the lens surfaces. Exp. Cell Res. 3, 199–208 (1952)CrossRefGoogle Scholar
  32. 32.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)Google Scholar
  33. 33.
    R.C. Jones, A new calculus for the treatment of optical systems: I: Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941)ADSCrossRefGoogle Scholar
  34. 34.
    R.C. Jones, A new calculus for the treatment of optical systems: II: Proof of three general equivalence theorems. J. Opt. Soc. Am. 31, 493–499 (1941)ADSCrossRefGoogle Scholar
  35. 35.
    R.C. Jones, A new calculus for the treatment of optical systems: III: The Sohncke theory of optical activity. J. Opt. Soc. Am. 31, 500–503 (1941)ADSCrossRefGoogle Scholar
  36. 36.
    R.C. Jones, A new calculus for the treatment of optical systems: IV. J. Opt. Soc. Am. 32, 486–493 (1942)ADSCrossRefGoogle Scholar
  37. 37.
    R.C. Jones, A new calculus for the treatment of optical systems: V: A more general formulation and description of another calculus. J. Opt. Soc. Am. 37, 107–110 (1947)ADSCrossRefGoogle Scholar
  38. 38.
    R.C. Jones, A new calculus for the treatment of optical systems: VI: Experimental determination of the matrix. J. Opt. Soc. Am. 37, 110–112 (1947)ADSCrossRefGoogle Scholar
  39. 39.
    R.C. Jones, A new calculus for the treatment of optical systems: VII: Properties of the \(n\)-matrices. J. Opt. Soc. Am. 38, 110–112 (1948)Google Scholar
  40. 40.
    R.C. Jones, A new calculus for the treatment of optical systems: VIII: Electromagnetic theory. J. Opt. Soc. Am. 46, 126–131 (1956)ADSCrossRefGoogle Scholar
  41. 41.
    K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae Ser. A. I. Math. Phys. A 137, 1–79 (1947)Google Scholar
  42. 42.
    Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka, Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 1057–1060 (1984)Google Scholar
  43. 43.
    K. Kim, L. Mandel, E. Wolf, Relationship between Jones and Mueller matrices for random media. J. Opt. Soc. Am. A 4, 433–437 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    H. Kubota, S. Inoué, Diffraction images in the polarisation microscope. J. Opt. Soc. Am. 49, 191–198 (1959)ADSCrossRefGoogle Scholar
  45. 45.
    R.H. Lehmberg, A.J. Schmitt, S.E. Bodner, Theory of induced spatial incoherence. J. Appl. Phys. 62, 2680–2701 (1987)Google Scholar
  46. 46.
    K. Lindfors, T. Setälä, M. Kaivola, A. Friberg, Degree of polarization in tightly focused optical fields. J. Opt. Soc. Am. A 22, 561–568 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    X. Liu, J. Pu, Focal shift and focal switch of partially coherent light in dual-focus systems. Opt. Commun. 252, 262–267 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    M. Loève, Probability Theory, 4th edn. (Springer, Heidelberg, 1978)Google Scholar
  49. 49.
    A. Luis, Degree of polarization for three-dimensional fields as a distance between correlation matrices. Opt. Commun. 253, 10–14 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)Google Scholar
  51. 51.
    M. Mansuripar, Distribution of light at and near the focus of high numerical aperture objectives. J. Opt. Soc. Am. A 3, 2086–2093 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)CrossRefGoogle Scholar
  53. 53.
    J.P. McGuire Jr., R.A. Chipman, Diffraction image formation in optical systems with polarization aberrations: I: Formulation and example. J. Opt. Soc. Am. A 7, 1614–1626 (1990)Google Scholar
  54. 54.
    J.P. McGuire Jr., R.A. Chipman, Diffraction image formation in optical systems with polarization aberrations: II: Amplitude response matrices for rotationally symmetric systems. J. Opt. Soc. Am. A 8, 833–840 (1991)Google Scholar
  55. 55.
    J.P. McGuire Jr., R.A. Chipman, Polarization aberrations: 1: Rotationally symmetric optical systems. Appl. Opt. 33, 5080–5100 (1994)Google Scholar
  56. 56.
    H. Mueller, The foundations of optics. J. Opt. Soc. Am. A 8, 661 (1938)Google Scholar
  57. 57.
    I. Netwon, Optiks (Smith and Walford, London, 1704)Google Scholar
  58. 58.
    C. Palma, G. Cincotti, Imaging of \(j_0\) correlated Bessel-Gauss beams. IEEE J. Quantum Electron. 33, 1032–1040 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    N.G. Parke, Optical algebra. J. Math. Phys. 28, 131 (1949)MathSciNetzbMATHGoogle Scholar
  60. 60.
    H. Poincaré, Théorie Mathématique de la Lumière, vol. 2, chap. 12 (Gauthiers-Villars, Paris, 1892)Google Scholar
  61. 61.
    S.K. Rhodes, K.A. Nugent, A. Roberts, Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe. J. Opt. Soc. Am. A 19, 1689–1693 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    B. Richards, E. Wolf, Electromagnetic diffraction in optical systems: II: Structure of the image field in an aplanatic system. Trans. Opt. Inst. Pet. 253, 358–379 (1959)zbMATHGoogle Scholar
  63. 63.
    C. Rydberg, First- and second-order statistics of partially coherent, high-numerical-aperture optical fields. Opt. Lett. 33, 104–106 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    T. Setälä, J. Tervo, A. Friberg, Complete electromagnetic coherence in the space-frequency domain. Opt. Lett. 29, 328–330 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    W.A. Shurcliff, Polarised Light: Production and Use (Harvard University Press, Cambridge, 1962)Google Scholar
  66. 66.
    J.J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, 1986)zbMATHGoogle Scholar
  67. 67.
    G.G. Stokes, On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Phil. Soc. 9, 399 (1852)ADSGoogle Scholar
  68. 68.
    J. Stolze, D. Suter, Quantum Computing : A Short Course from Theory to Experiment (Wiley GmbH, Weinheim, 2004)zbMATHGoogle Scholar
  69. 69.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941)zbMATHGoogle Scholar
  70. 70.
    J. Tervo, T. Setälä, A. Friberg, Theory of partially coherent electromagnetic fields in the space-frequency domain. J. Opt. Soc. Am. A 21, 2205 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    P. Török, An imaging theory for advanced, high numerical aperture optical microscopes. DSc Thesis, 2003Google Scholar
  72. 72.
    P. Török, P.D. Higdon, T. Wilson, On the general properties of polarised light conventional and confocal microscopes. Opt. Commun. 148, 300–315 (1998)ADSCrossRefGoogle Scholar
  73. 73.
    P. Török, P.R.T. Munro, The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express 12, 3605–3617 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    P. Török, P. Varga, Electromagnetic diffraction of light focused through a stratified medium. Appl. Opt. 36, 2305–2312 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    P. Török, P. Varga, G.R. Booker, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field: I. J. Opt. Soc. Am. A 12, 2136–2144 (1995)ADSCrossRefGoogle Scholar
  76. 76.
    P. Török, P. Varga, Z. Laczik, G.R. Booker, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J. Opt. Soc. Am. A 12, 325–332 (1995)ADSCrossRefGoogle Scholar
  77. 77.
    J.S. Tyo, Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. Appl. Opt. 41, 619–630 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    T. van Dijk, G. Gbur, T. Visser, Shaping the focal intensity distribution using spatial coherence. J. Opt. Soc. Am. A 22, 575–581 (2008)CrossRefGoogle Scholar
  79. 79.
    E. Waluschka, Polarization ray trace. Opt. Eng. 28, 86–89 (1989)ADSCrossRefGoogle Scholar
  80. 80.
    W. Wang, A. Friberg, E. Wolf, Focusing of partially coherent light in systems of large Fresnel numbers. J. Opt. Soc. Am. A 14, 491–496 (1997)ADSCrossRefGoogle Scholar
  81. 81.
    G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  82. 82.
    N. Wiener, Coherency matrices and quantum theory. J. Math. Phys. 7, 109 (1928)MathSciNetzbMATHGoogle Scholar
  83. 83.
    N. Wiener, Harmonic analysis and the quantum theory. J. Franklin Inst. 207, 525 (1929)zbMATHCrossRefGoogle Scholar
  84. 84.
    E. Wolf, Coherence properties of partially polarized electromagnetic radiation. Nuovo Cimento 15, 1165 (1959)Google Scholar
  85. 85.
    E. Wolf, Electromagnetic diffraction in optical systems: I: An integral representation of the image field. Proc. R. Soc. Lond. A 253, 349–357 (1959)ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    E. Wolf, New theory of partial coherence in the space-frequency domain: I: Spectra and cross spectra of steady-state sources. J. Opt. Soc. Am. 72, 343–351 (1982)ADSCrossRefGoogle Scholar
  87. 87.
    E. Wolf, Selected Works of Emil Wolf with Commentary (World Scientific, Singapore, 2001)Google Scholar
  88. 88.
    E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)MathSciNetADSCrossRefGoogle Scholar
  89. 89.
    E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007)zbMATHGoogle Scholar
  90. 90.
    Z. Zhang, J. Pu, X. Wang, Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective. Opt. Lett. 33, 49–51 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations