Fundamentals of Probability Theory

  • Matthew R. Foreman
Part of the Springer Theses book series (Springer Theses)


Probability is a concept familiar to the vast majority of readers on an intuitive level, however in a stricter sense it is generally poorly understood. A substantial fraction of this thesis draws ideas and tools from the rigorous theories of probability and thus it is apt to provide a fuller account of the rudimentary mathematical principles. This chapter does not aim to give an exhaustive exposition of probability theory (fuller discussion can be found in many existing texts, such as [2,5,10,11,16], but instead particular attention is given to the meaning of randomness, whereby a suitable parameterisation of the statistics involved can be formulated.


Random Process Cumulative Distribution Function Gaussian Random Variable Order Moment Discrete Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Abramson, Information Theory and Coding (McGraw Hill, New York, 1963)Google Scholar
  2. 2.
    R.B. Ash, C.A. Doléans-Dade, Probability and Measure Theory (Elsevier Academic Press, New York, 1999)Google Scholar
  3. 3.
    M.L. Boas, Mathematical Methods in the Physical Sciences, 2nd edn. (Wiley, New York, 1983)Google Scholar
  4. 4.
    V. Delaubert, N. Treps, C. Fabre, A. Maître, H.A. Bachor, P. Réfrégier, Quantum limits in image processing. Europhys. Lett. 81, 44001 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    W. Feller, Probability Theory and its Applications (Addison-Wesley, Reading, 1950)zbMATHGoogle Scholar
  6. 6.
    M. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics (Oxford University Press, Oxford, 2006)Google Scholar
  7. 7.
    J.W. Goodman, Statistical Optics (Wiley, New York, 2004)Google Scholar
  8. 8.
    F. Hitoshi, A. Toshimitsu, N. Kunihiko, S. Yoshihisa, O. Takehiko, Blood flow observed by time-varying laser speckle. Opt. Lett. 10(3), 104–106 (1985)CrossRefGoogle Scholar
  9. 9.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Itô, Introduction to Probability Theory (Cambridge University Press, Cambridge, 1984)zbMATHGoogle Scholar
  11. 11.
    J. Jacod, P. Protter, Probability Essentials (Springer, New York, 2004)CrossRefGoogle Scholar
  12. 12.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, London, 1993)zbMATHGoogle Scholar
  13. 13.
    A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604–615 (1934)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Heidelberg, 1933)Google Scholar
  15. 15.
    A. Kolmogorov, Foundations of the Theory of Probability, 2nd edn. (Chelsea Publishing, New York, 1956)Google Scholar
  16. 16.
    A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, Reading, 1994)Google Scholar
  17. 17.
    M. Loève, Probability Theory, 4th edn. (Springer, Heidelberg, 1978)Google Scholar
  18. 18.
    R. Loudon, The Quantum Theory of Light, 3rd edn. (Clarendon Press, Oxford, 2000)Google Scholar
  19. 19.
    L. Mandel, Fluctuations of Light Beams. Progress in Optics, vol. 2 (North-Holland Publishing Co., Amsterdam, 1963)Google Scholar
  20. 20.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)Google Scholar
  21. 21.
    W. Martin, P. Flandrin, Spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech. 33, 1461–1470 (1985)CrossRefGoogle Scholar
  22. 22.
    G. Matz, F. Hlawatsch, W. Kozek, Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes. IEEE Trans. Signal Process. 45, 1520–1534 (1997)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    M.B. Priestley, Power spectral analysis of non-stationary random processes. J. Sound Vib. 6(1), 86–97 (1967)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    L.L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, Reading, 1991)zbMATHGoogle Scholar
  25. 25.
    C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948)Google Scholar
  26. 26.
    C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Treps, V. Delaubert, A. Maître, J.M. Courty, C. Fabre, Quantum noise in multipixel image processing. Phys. Rev. A 71, 013820 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A. van den Bos, A Cramér-Rao lower bound for complex parameters. IEEE Trans. Signal Process. 42, 2859 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    W. Weaver, Some Recent Contributions to the Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)Google Scholar
  30. 30.
    N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117–258 (1930)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations