Physical Effects of Nanoparticles and Nanoparticle Ensembles: Impact to System Packaging

  • Lukas M. Eng


Nanoparticles and systems made-up from such nanoparticles witness a bright and prospective future in high-end technological applications. Nanoparticles are right at the edge to enter market-relevant products in medicine and biology, but equally be applied in many inorganic and semiconducting devices. The driving force to take profit from such confined nanomaterials though, might have very different origins, may it be the novelty and challenging new physics popping up behind them, or rather be it the economic and “green power” requests for our 21\(^\mathrm{ st}\) century society. What so ever, nanoparticles are a must to be considered when it comes to novelty, energy management, integration issues, and costs. Some of these novel physical challenges and impacts will be discussed here in the context of modern type applications. Also the relevant physico-chemical background for such nanoparticles and nanoparticle systems will be given, shedding light on scalability and anisotropy of nanoparticles.


Quantum Mechanic Thermal Energy Storage Palladium Nanoparticles Nanoparticle System Hydrogen Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alibart, F., Pleutin, S., Guérin, D., Novembre, C., Lenfant, S., Lmimouni, K., Gamrat, C., Vuillaume, D.: An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 30(2), 330–337 (2009)Google Scholar
  2. 2.
    Becherer, J., Mieth, O., Vidyarthi, V.S., Gerlach, G., Eng, L.M.: Ultra-low voltage ferroelectric electron emission from lead zirconate titanate thin films with nanostructured top electrodes. J. Appl. Phys. 110, 014104, 1–3 (2011)Google Scholar
  3. 3.
    Bermudez, E., Mangum, J.B., Wong, B.A., Asgharian, B., Hext, P.M., Warheit, D.B., Evritt, J.I.: Pulmonary responses of mice, rats and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 77, 347–357 (2004)CrossRefGoogle Scholar
  4. 4.
    Brown, D., Wilson, M., MacNee, W., Stone, V., Donaldson, K.: Size dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175, 191–199 (2001)CrossRefGoogle Scholar
  5. 5.
    Chan, J.M., Zhang, L., Tong, R., Ghosh, D., Gao, W., Liao, G., Yuet, K.P., Gray, D., Rhee, J.W., Cheng, J., Golomb, G., Libby, P., Langer, R., Farokhzad, O.C.: Spatiotemporal controlled delivery of nanoparticles to injured vasculature. PNAS 107(5), 2213–2218 (2010)CrossRefGoogle Scholar
  6. 6.
    Colvin, V.L.: The potential environmental impact of engineered nanoparticles. Nat. Biotechnol. 21, 1166–1170 (2003)CrossRefGoogle Scholar
  7. 7.
    Drexler, K.E.: Nanosystems: Molecular machinery, Manufacturing, and Computation. Wiley, New York (1992)Google Scholar
  8. 8.
    Fendler, J. (ed.): Nanoparticles and Nanostructured Films. Wiley-VCH, Weinheim (1998)Google Scholar
  9. 9.
    Härtling, T., Uhlig, T., Seidenstücker, A., Bigall, N.C., Olk, P., Wiedwald, U., Han, L., Eychmüller, A., Plettl, A., Ziemann, P., Eng, L.M.: Fabrication of two-dimensional AuFePt core-shell nanoparticle arrays by photochemical metal deposition. Appl. Phys. Lett. 96, 183111, 1–3 (2010)Google Scholar
  10. 10.
    Höhr, D., Steinfartz, Y., Schins, R.P., Knaapen, A.M., Martra, G., Fubini, B., Borm, P.J.: The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine \({\rm {TiO}_{2}}\) in the rat. Int. J. Hyg. Environ. Health 205, 239–244 (2002)CrossRefGoogle Scholar
  11. 11.
    Hou, Y., Gao, S.: Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J. Mater. Chem. 13, 1510–1512 (2003)CrossRefGoogle Scholar
  12. 12.
    Magnus, W.C.J., Schoenmaker, W.J. (eds.): Quantum Transport in Sub-Micron Devices. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Oberdörster, G., Finkelstein, J.N., Johnston, C., Gelein, R., Cox, C., Baggs, R., Elder, A.C.P.: Acute pulmonary effects of ultrafine particles in rats and mice. HEI Research Report, 96 (2000)Google Scholar
  14. 14.
    Rubahn, H.G. (ed.): Nanophysik und Nanotechnologie. Teubner, Stuttgart (2002)Google Scholar
  15. 15.
    Sinha, A., Suzuki, K., Takahara, M., Azuma, H., Nonaka, T., Fukumoto, K.: Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew. Chem. Int. Ed. 119(16), 2949–2952 (2007)CrossRefGoogle Scholar
  16. 16.
    Tran, C.L., Buchanan, R.T., Cullen, R.T., Searl, A., Jones, A.D., Donaldson, K.: Inhalation of poorly soluble particles II influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12, 1113–1126 (2000)CrossRefGoogle Scholar
  17. 17.
    Xie, J., Chen, K., Lee, H.Y., Xu, C., Hsu, A.R., Peng, S., Chen, X., Sun, S.: Ultrasmall c(RGDyK)-coated \(\rm Fe_3O_4\) nanoparticles and their specific targeting to integrin \({\alpha _{v}} {\beta _{3}}\)-rich tumor cells. J. Am. Chem. Soc. 130(24), 7542–7543 (2008)CrossRefGoogle Scholar
  18. 18.
    Xu, T., Zach, M.P., Xiao, Z.L., Rosenmann, D., Welp, U., Kwok, W.K., Crabtree, G.W.: Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 86, 203104, 1–3 (2005)Google Scholar
  19. 19.
    Zhou, S., Liu, X., Wang, D.: \({\rm {Si/TiSi}_{2}}\) heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 10(3), 860–863 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhotophysicsTechnische Universität DresdenDresdenGermany

Personalised recommendations