Skip to main content
  • 1823 Accesses

Abstract

Modern three-dimensional (3D) designs, in which the active devices are placed in multiple layers using 3D integration technologies, are helping to maintain the validity of Moore’s law in today’s nano era. In this chapter, an overview of technologies and physical design in the new 3-dimensional context is presented. A survey of modern 3D integration technologies, such as 3D packages and 3D integrated circuits, is given first. The author then investigates the physical design steps of floorplanning, placement and routing to identify the new design challenges and solutions of 3D nanoscale circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyne, E.: The rise of the 3rd dimension for system integration. In: International Interconnect Technology Conference, pp. 1–5, San Francisco, USA, July 2006

    Google Scholar 

  2. Cheng, L., Deng, L., Wong, M.D.F.: Floorplanning for 3-D VLSI design. In: Proceedings of the 2005 Conference on Asia South Pacific Design Automation, ASP-DAC ’05, pp. 405–411. ACM (2005). doi:10.1145/1120725.1120899

    Google Scholar 

  3. Cong, J., Wei, J., Zhang, Y.: A thermal-driven floorplanning algorithm for 3D ICs. In: IEEE/ACM International Conference on Computer Aided Design, ICCAD-2004, pp. 306–313. (2004)

    Google Scholar 

  4. Cong, J., Zhang, Y.: Thermal-driven multilevel routing for 3D ICs. In: Proceedings of the 2005 Conference on Asia and South Pacific Design Automation, ASP-DAC 2005, vol. 1, pp. 121–126. ACM (2005). doi: 10.1109/ASPDAC.2005.1466143

    Google Scholar 

  5. Das, S.: Design automation and analysis of three-dimensional integrated circuits. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  6. Das, S., Chandrakasan, A., Reif, R.: Design tools for 3-D integrated circuits. In: Proceedings of the 2003 Conference on Asia and South Pacific Design Automation, ASP-DAC 2003, pp. 53–56. doi:10.1109/ASPDAC.2003.1194993

    Google Scholar 

  7. Davis, W.R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A.M., Steer, M., Franzon, P.D.: Demystifying 3D ICs: the pros and cons of going vertical. IEEE Des. Test Comput. 22(6), 498–510 (2005). doi:10.1109/MDT.2005.136

    Article  Google Scholar 

  8. Fischbach, R., Lienig, J., Meister, T.: From 3D circuit technologies and data structures to interconnect prediction. In: SLIP ’09: Proceedings of the 11th International Workshop on System Level Interconnect Prediction, pp. 77–84. ACM, New York (2009). doi:10.1145/1572471.1572485.

    Google Scholar 

  9. Goplen, B., Sapatnekar, S.: Efficient thermal placement of standard cells in 3D ICs using a force directed approach. In: International Conference on Computer Aided Design, ICCAD-2003, pp. 86–89 (2003)

    Google Scholar 

  10. Goplen, B., Sapatnekar, S.: Thermal via placement in 3D ICs. In: Proceedings of the 2005 International Symposium on Physical Design, ISPD ’05, pp. 167–174. ACM, New York (2005). doi: 10.1145/1055137.1055171

    Google Scholar 

  11. Goplen, B., Sapatnekar, S.: Placement of 3D ICs with thermal and interlayer via considerations. In: S. Sapatnekar (ed.) Proceedings of the 44th ACM/IEEE Design Automation Conference DAC ’07, pp. 626–631 (2007). doi: 10.1109/DAC.2007.375239

    Google Scholar 

  12. Guarini, K.W., Topol, A.W., Ieong, M., et al.: Electrical integrity of state-of-the-art 0.13 mum SOI CMOS devices and circuits transferred for three-dimensional (3D) integrated circuit (IC) fabrication. In: Proceedings of the Digest. International Electron Devices Meeting IEDM ’02, pp. 943–945 (2002). doi:10.1109/IEDM.2002.1175992

    Google Scholar 

  13. ITRS: International Technology Roadmap for Semiconductors. Tech. rep., ESIA, JEITA, KSIA, TSIA and SIA (2007). http://www.itrs.net/reports.html

  14. Knechtel, J., Markov, I.L., Lienig, J.: Assembling 2D blocks into 3D chips. In: Proceedings of the 2011 International Symposium on Physical Design, pp. 81–88. ACM (2011). doi:10.1109.TCAD.2011.2174640

  15. Lim, S.K.: Physical design for 3D system on package. IEEE Des. Test Comput. 22(6), 532–539 (2005). doi:10.1109/MDT.2005.149

    Article  Google Scholar 

  16. Loh, G.H., Xie, Y., Black, B.: Processor design in 3D die-stacking technologies. IEEE Micro. 27(3), 31–48 (2007). doi:10.1109/MM.2007.59

    Article  Google Scholar 

  17. Lou, J., Krishnamoorthy, S., Sheng, H.S.: Estimating routing congestion using probabilistic analysis. In: Proceedings of the 2001 International Symposium on Physical Design, ISPD ’01, pp. 112–117. ACM (2001). doi:10.1145/369691.369749

    Google Scholar 

  18. Topol, A.W., Tulipe Jr, D.C., Shi, L., Frank, D.J., Bernstein, K., Steen, S.E., Kumar, A., Singco, G.U., Young, A.M., Guarini, K.W., Ieong, M.: Three-dimensional integrated circuits. IBM J. Res. Dev. 50(4/5), 491–506 (2006). doi:10.1147/rd.504.0491

    Article  Google Scholar 

  19. Tummala, R.R.: SOP: What is it and why? A new microsystem-integration technology paradigm-moore’s law for system integration of miniaturized convergent systems of the next decade. IEEE Trans. Adv. Pack. 27(2), 241–249 (2004). doi:10.1109/TADVP.2004.830354

    Article  Google Scholar 

  20. Viswanathan, N., Chu, C.C.N.: FastPlace: efficient analytical placement using cell shifting, iterative local refinement, and a hybrid net model. IEEE Trans. Comput. Aid. D. 24(5), 722–733 (2005). doi:10.1109/TCAD.2005.846365

    Article  Google Scholar 

  21. Xie, Y., Loh, G.H., Black, B., Bernstein, K.: Design space exploration for 3D architectures. J. Emerg. Technol. Comput. Syst. 2(2), 65–103 (2006). doi:10.1145/1148015.1148016

    Google Scholar 

  22. Zhang, T., Zhan, Y., Sapatnekar, S.S.: Temperature-aware routing in 3D ICs. In: Asia and South Pacific Conference on Design Automation, 2006, pp. 309–314. doi:10.1109/ASPDAC.2006.1594700

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Robert Fischbach and Tilo Meister for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lienig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lienig, J. (2012). 3D Design. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_4

Download citation

Publish with us

Policies and ethics