Direct Encapsulation of OLED on CMOS

  • Christian Schmidt


The integration of organic light-emitting diodes (OLED) into semiconductor technology (CMOS) requires a protection, called encapsulation, which covers the OLED forming a barrier against the environment (oxygen, moisture, mechanical). The essential encapsulation technology has to be suitable for full-wafer production regarding low chip cost, fast throughput and accurate processing. A combination of thin-film and direct encapsulation might result in a proper protection for organic devices, containing the advantages of a good barrier, mechanical protection, easy extension with light-forming components and a pre-protection. Aligned adhesive wafer bonding technology is characterized for this hybrid encapsulation approach. A flow of fabrication steps is discussed, which builds up a sandwich of a CMOS wafer with the OLED and a cover glass wafer with color filter structures. This process flow manufactured an OLED microdisplay, which is implemented in a head-mounted display demonstrator.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Complementary Metal Oxide Semiconductor Color Filter Water Vapor Transmission Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Addison Clear Wave: AC A1428–UV-curable epoxy sealant of flexible OLED sealant. Technical Report (2002).
  2. 2.
    Applied Microengineering Ltd.: Aligner wafer bonders. Technical Report (2008).
  3. 3.
    Aziz, H., Popovic, Z.D.: Degradation phenomena in small-molecule organic light-emitting devices. Chem. Mater. 16, (2004). doi: 10.1021/cm040081o
  4. 4.
    Buchhauser, D.: Weiße Emitter in OLEDs fr Vollfarbdisplays und Beleuchtungszwecke. Ph.D. Thesis, Technische Universität Bergakademie Freiberg (2007)Google Scholar
  5. 5.
    Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539–541, (1990)Google Scholar
  6. 6.
    Carcia, P.F., McLean, R.S., Groner, M.D., Dameron, A.A., George, S.M.: Gas diffusion ultrabarriers on polymer substrates using \({\rm Al}_2{\rm O}_3\) atomic layer deposition and sin plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106(2), (2009). doi: 10.1063/1.3159639
  7. 7.
    Celler, G.K., Cristoloveanu, S.: Frontier of silicon-on-insulator. J. Appl. Phys. 93(9), (2003). doi: 10.1063/1.1558223
  8. 8.
    Chwang, A.B., Rothman, M.A., Mao, S.Y., Hewitt, R.H., Weaver, M.S., Silvernail, J.A., Rajan, K., Hack, M., Brown, J.J.: Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 83(3), (2003). doi: 10.1063/1.1594284
  9. 9.
    Delo Industrial Adhesives: Technical information Delo-Dualbond LP VE 19487. Technical Report (2006).
  10. 10.
    DisplaySearch: OLED 2009 Revenue Growth Continues, Up 35% Y/Y to $826M, According to DisplaySearch. Austin, Texas (2010, Press Release)Google Scholar
  11. 11.
    Doerfler, R., Barth, S., Boeffel, C., Wedel, A.: New UV-curing OLED encapsulation adhesive with low water permeation. In: SID 2006 Digest, vol. 37, pp. 440–443. SID (2006). doi: 10.1889/1.2433526
  12. 12.
    Electro-Lite Corporation: Technical data sheet ELC-2500CL. Technical Report (2007).
  13. 13.
    EV Group: IQ-Aligner. Technical Report (2004).
  14. 14.
    EV Group: Wafer bonding system EVG500. Technical Report (2007).
  15. 15.
    Fehse, K., May, C., Schmidt, C., Vogel, U., Hild, O.R.: Challenges for OLED-on-CMOS process technology. In: SID-ME Chapter Spring Meeting (2010). PosterGoogle Scholar
  16. 16.
    Forrest, S.R., Bradley, D., Thompson, M.: Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15(13), 1043–1048 (2003). doi: 10.1002/adma.200302151 CrossRefGoogle Scholar
  17. 17.
    Fraunhofer IPMS: Fraunhofer IPMS achieves ‘first light’ with its HYPOLED digital VGA full-color OLED microdisplay, 4 Feb 2010. Press releaseGoogle Scholar
  18. 18.
    Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, W.R.: Electroluminescence in conjugated polymers. Nature 397, (1999). doi: 10.1038/16393 (Review)
  19. 19.
    Geffroy, B., Le Roy, P., Prat, C.: Review-organic light-emitting diode (OLED) technology-materials, devices and display technologies. Polym. Int. 55, 572–582 (2005). doi: 10.1002/pi.1974
  20. 20.
    Ghosh, A.P., Gerenser, L.J., Jarman, C.M., Fornalik, J.E.: Thin-film encapsulation of organic light-emitting devices. Appl. Phys. Lett. 86, (2005). 10.1063/1.1929867 Eastman Kodak Company, 1999 Lake Ave., Rochester, New York 14650Google Scholar
  21. 21.
    Gil, T.H., May, C., Lakner, H., Leo, K., Keller, S.: Al top cathode deposition on OLED using dc magnetron sputtering. Plasma Processes Polym. 6, (2009). doi: 10.1002/ppap.200932105
  22. 22.
    Gil, T.H., May, C., Scholz, S., Franke, S., Toerker, M., Lakner, H., Leo, K., Keller, S.: Origin of damages in OLED from Al top electrode deposition by dc magnetron sputtering. Org. Electron. 11(2), 322–331 (2010). doi: 10.1016/j.orgel.2009.11.011 CrossRefGoogle Scholar
  23. 23.
    Grossmann, C., Dufour, O., Zilstorff Christian; Notni, G.: OLED based projection systems for mobile application. In: SID ME–Chapter Spring Meeting 2010. Dresden (2010)Google Scholar
  24. 24.
    Habenicht, G.: Kleben, 6th edn. Springer, Berlin (2009)Google Scholar
  25. 25.
    Haller, W., Onusseit, H., Gierenz, G., Gruber, W., Rich, R.D., Henke, G., Thiele, L., Hoffmann, H., Dausmann, D., Özelli, R.N., Windhvel, U., Sattler, H.P., Dierichs, W., Tauber, G., Hirthammer, M., Matz, C., Holloway, M., Melody, D., Rust, E.U., Halteren, A.v., Picker, S.: Adhesives. Ullmann’s Encyclopedia of Industrial Chemistry 7, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009). doi:10.1002/14356007.a01_221.pub2Google Scholar
  26. 26.
    Hung, L.S., Chen, C.H.: Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R 39, 143–222 (2002). doi: 10.1016/S0927-796X(02)00093-1
  27. 27.
    Kim, G.H., Oh, J., Yang, Y.S., Do, L.M., Suh, K.S.: Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films. Polymer 45, (2004). doi: 10.1016/j.polymer.2004.01.038
  28. 28.
    Kobrin, P., Fisher, R., Gurrola, A.: Reversible photodegradation of organic light-emitting diodes. Appl. Phys. Lett. 85, 2385–2387 (2004). doi: 10.1063/1.1793344 Google Scholar
  29. 29.
    Kreye, D., Toerker, M., Vogel, U., Bunk, G., Grillberger, C., Amelung, J.: Microdisplays with highly efficient small molecules OLEDs. SID-MID-Europe Chapter Spring Meeting–Microdisplays, Applications, and Optics (2008). SID-MID-Europe Chapter 2008. CD-ROM: March 13–14, 2008, Jena
  30. 30.
    Kreye, D., Törker, M., Vogel, U., Amelung, J.: Full colour RGB OLEDs on CMOS for active-matrix OLED microdisplays. Proceedings of SPIE 6333, SPIE (2006). doi: 10.1117/12.680758
  31. 31.
    Kumara, R., Aucha, M., Oua, E., Ewaldb, G., Jina, C.S.: Low moisture permeation measurement through polymer substrates for organic light emitting devices. Thin Solid Films 417, 120–126 (2002)CrossRefGoogle Scholar
  32. 32.
    Lee, Y.G., Choi, Y.H., Kee, I.S., Shim, H.S., Jin, Y., Lee, S., Koh, K.H., Lee, S.: Thin-film encapsulation of top emission organic light-emitting devices with polyurea-\({\rm Al}_2{\rm O}_3\) hybrid multi-layers. Org. Electron. (2009). doi:  10.1016/j.orgel.2009.07.015 Google Scholar
  33. 33.
    Mandlik, P., Gartside, J., Han, L., Cheng, I.C., Wagner, S., Silvernail, J.A., Ma, R.Q., Hack, M., Brown, J.J.: A single-layer permeation barrier for organic light-emitting displays. Appl. Phys. Lett. 92, 2008, doi: 10.1063/1.2890432
  34. 34.
    Mathine, D.L., Woo, H.S., He, W., Kim, T.W., Kippelen, B., Peyghambarian, N.: Heterogeneously integrated organic light-emitting diodes with complementary metal-oxide-silicon circuitry. Appl. Phys. Lett. 76, 3849 (2000). doi: 10.1063/1.126798 Google Scholar
  35. 35.
    McCluney, W.R.: Introduction to Radiometry and Photometry. Artech House, Boston (1994). ISBN 978-0-89006-678-2Google Scholar
  36. 36.
    Meerheim, R., Lüssem, B., Leo, K.: Efficiency and stability of p-i-n type organic light emitting diodes for display and lighting applications. Proc. IEEE 97(9), 1606–1626 (2009). doi: 10.1109/JPROC.2009.2022418 CrossRefGoogle Scholar
  37. 37.
    Microemissive Displays: Colour optoelectronic device (2008). Pr.: GB 0622998.3, 17.11.2006Google Scholar
  38. 38.
    Mirza, A.R.: One micron precision, wafer-level aligned bonding for interconnect, mems and packaging applications. In: Electronic Components and Technology Conference, pp. 676–680. Electronic Visions, Inc. (2000)Google Scholar
  39. 39.
    Nagase Chemtex: Technical information sheet UV Resin XNR5541. Technical Report (2006). Scholar
  40. 40.
    Niklaus, F., Enoksson, P., Klvesten, E., Stemme, G.: A method to maintain wafer alignment precision during adhesive wafer bonding. Sens. Actuators A 107, (2003). doi: 10.1016/S0924-4247(03)00356-X
  41. 41.
    Niklaus, F., Stemme, G., Lu, J.Q., Gutmann, R.J.: Adhesive wafer bonding. J. Appl. Phys. 99, 031101 (2006). doi: 10.1063/1.2168512 Google Scholar
  42. 42.
    Pham, H.Q., Marks, M.J.: Epoxy resins. Ullmann’s Encyclopedia of Industrial Chemistry 7, Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim (2005). doi: 10.1002/14356007.a09
  43. 43.
    Pham, N.P., Burghartz, J.N., Sarro, P.M.: Spray coating of photoresist for pattern transfer on high topography surfaces. J. Micromech. Microeng. 15, 691–697 (2005). doi: 10.1088/0960-1317/15/4/003 Google Scholar
  44. 44.
    Reckziegel, S., Kreye, D., Puegner, T., Grillberger, C., Toerker, M., Vogel, U.: Optoelectronic chips integrate emitters and sensors. SPIE (2008). doi: 10.1117/2.1200806.1151 SPIE Newsroom
  45. 45.
    Star Technology: Product bulletin L-75-1. Technical report (2009).
  46. 46.
    Süss MicroTec: Laboratory mask aligner MA8. Technical report (2006).
  47. 47.
    Süss MicroTec: Manual wafer bonder SB6L. Technical report (2008).
  48. 48.
    Tang, C.W., Van Slyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, (1987)Google Scholar
  49. 49.
    Toerker, M., Grillberger, C., Kreye, D., Vogel, U., Amelung, J.: Integration of top-emitting organic light emitting diodes on CMOS substrates. In: Paul L. Heremans, Michele Muccini, Eric A. Meulenkamp (eds.) Organic Optoelectronics and Photonics III, Proceedings of SPIE 6999, doi: 10.1117/12.781076 Strasbourg, France (2008)
  50. 50.
    Vogel, U., Kreye, D., Reckziegel, S., Törker, M., Grillberger, C., Amelung, J.: OLED-on-CMOS integration for optoelectronic sensor applications. Proceedings of SPIE 6477, SPIE (2007)Google Scholar
  51. 51.
    Vogel, U., Kreye, D., Richter, B., Bunk, G., Reckziegel, S., Herold, R., Scholles, M., Toerker, M., Grillberger, C., Amelung, J., Graupner, S.T., Pannasch, S., Heubner, M., Velichkovsky, B.: Bi-directional OLED microdisplay for interactive HMD. In: SID International Symposium 2008, vol. XXXIX, pp. 81–84. Society for Information Display (SID International Symposium) (2008)Google Scholar
  52. 52.
    Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107(4), (2007). doi: 10.1021/cr050156n
  53. 53.
    Wang, X.Z., Gao, X.D., Zhou, Y.C., Xie, Z.T., Song, Q.L., Ding, X.M., Hou, X.Y.: Photodegradation of organic light-emitting devices observed in nitrogen-filled environment. Thin Solid Films 516, 2171–2174 (2008). doi: 10.1016/j.tsf.2007.06.141 Google Scholar
  54. 54.
    Wang, Y.Y., Hsieh, T.E., Chen, I.C., Chen, C.H.: Direct encapsulation of organic light-emitting devices (OLEDs) using photo-curable co-polyacrylate/silica nanocomposite resin. IEEE Trans. Adv. Packag. 30(3), (2007).
  55. 55.
    Yacobi, B.G., Martin, S., Davis, K., Hudson, K., Hubert, M.: Adhesive bonding in microelectronics and photonics. J. Appl. Phys. 91(10), (2002). doi: 10.1063/1.1467950 (Review)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Fraunhofer Institute for Photonic Microsystems (IPMS)DresdenGermany

Personalised recommendations