Photonic System Integration of Optical Waveguides in MOEMS

  • Ralf Rieske


This chapter gives an overview about the state-of-the-art of photonic system integration into electronic systems. Apart from parallel optical communication within high performance computing systems as its main driver, photonic system integration will be a key enabler for advanced opto-mechatronic systems especially for sensing in bio- and nano-electronics. From the technological point-of-view waveguide fabrication, integration as well as its coupling with electro-optical components is discussed. Requirements and trends for active optical components as well as advancements in nano-photonic integration will be considered. Furthermore, the challenges for this hybrid system integration will be shown as well as future developments.


Optical Link Optical Interconnect Laser Direct Writing Optical Attenuation Multimode Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Assefa, S., Xia, F., Vlasov, Y.A.: Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010). doi: 10.1038/nature08813 Google Scholar
  2. 2.
    Brusberg, L., Schlepple, N., Schroder, H.: Chip-to-chip communication by optical routing inside a thin glass substrate. In: IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 805–812 (2011). doi: 10.1109/ECTC.2011.5898603
  3. 3.
    Chan, B., Lin, H., Carver, C., Huang, J., Berry, J.: Organic optical waveguide fabrication in a manufacturing environment. In: Proceedings of the IEEE 60th Electronic Components and Technology Conference (ECTC), pp. 2012–2018. Endicott Interconnect Technologies, IEEE (2010). doi: 10.1109/ECTC.2010.5490669
  4. 4.
    Chang, Y.J., Guidotti, D., Chang, G.K.: An anchor-board-based flexible optoelectronic harness for off-chip optical interconnects. Photonics Technol. Lett. IEEE 20(10), 839–841 (2008). doi: 10.1109/LPT.2008.921822 CrossRefGoogle Scholar
  5. 5.
    Chappell, J., Hutt, D., Conway, P.: Variation in the line stability of an inkjet printed optical waveguide-applicable material. In: 2nd Electronics System-Integration Technology Conference (ESTC), pp. 1267–1272 (2008). doi: 10.1109/ESTC.2008.4684536
  6. 6.
    Clark, C., Robinson, J., Clayton, R.: Flexible polymer waveguides for optical wire bonds. J. Opt. A Pure Appl. Opt. 4(6), S224 (2002)CrossRefGoogle Scholar
  7. 7.
    Daele, P.V., Geerinck, P., Steenberge, G.V., Put, S.V., Cauwe, M.: Laser ablation as an enabling technology for opto-boards. In: Proceedings of 53rd Electronic Components and Technology Conference, pp. 1140–1146. Ghent University, IMEC (2003)Google Scholar
  8. 8.
    Dumke, M., Rieske, R., Craiovan, D., Fischer, C., Overmeyer, L.: Dispensing and printing of polymer optical waveguides. In: Proceedings of EOS MOC, München (2011)Google Scholar
  9. 9.
    Estevez, C.I., Guidotti, D., Chang, G.K.: A novel lightwave device integration and coupling process for optical interconnects. In: 59th Electronic Components and Technology Conference (ECTC), pp. 1859–1864. GATech (2009). doi: 10.1109/ECTC.2009.5074273
  10. 10.
    Fang, A.W., Park, H., Jones, R., Cohen, O., Paniccia, M.J., Bowers, J.E.: A continuous-wave hybrid AlGaInAs-silicon evanescent laser. Photonics Technol. Lett. IEEE 18(10), 1143–1145 (2006). doi: 10.1109/LPT.2006.874690 CrossRefGoogle Scholar
  11. 11.
    Feng, D., Feng, N.N., Kung, C.C., Liang, H., Qian, W., Fong, J., Luff, B.J., Asghari, M.: Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform. Opt. Express 19, 6125–61320 (2011)Google Scholar
  12. 12.
    Gauglitz, G.: Direct optical sensors: principles and selected applications. Anal. Bioanal. Chem. 381, 141–155 (2005). doi: 10.1007/s00216-004-2895-4
  13. 13.
    Green, W.M., Rooks, M.J., Sekaric, L., Vlasov, Y.A.: Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15(25), 17106–17113 (2007). doi: 10.1364/OE.15.017106 Google Scholar
  14. 14.
    Hendrickx, N., Erps, J.V., Thienpont, H., Daele, P.V.: Inter-plane coupling structures for pcb-integrated multilayer optical interconnection. In: Proceedings of the 16th European Microelectronics and Packaging Conference (EMPC), pp. 65–69. Ghent University (2007)Google Scholar
  15. 15.
    IPC International Technology Roadmap for Electronic Interconnections, IPC, Vol. 1 trends and issues. Technical Report (2006/2007)Google Scholar
  16. 16.
    Koch, B., Alduino, A., Liao, L., Jones, R., Morse, M., Kim, B., Lo, W.Z., Basak, J., Liu, H.F., Rong, H., Sysak, M., Krause, C., Saba, R., Lazar, D., Horwitz, L., Bar, R., Litski, S., Liu, A., Sullivan, K., Dosunmu, O., Na, N., Yin, T., Haubensack, F., wei Hsieh, I., Heck, J., Beatty, R., Bovington, J., Paniccia, M.: A \(4 \times 12.5\) Gb/s CWDM Si photonics link using integrated hybrid silicon lasers. In: Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2011)Google Scholar
  17. 17.
    Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007). doi: 10.1364/OE.15.000660 CrossRefGoogle Scholar
  18. 18.
    März, R.: Optische Kommunikationstechnik, chap. Optische Schaltungen. Springer, Berlin (2002)Google Scholar
  19. 19.
    Mori, T., Fujiwara, M., Terada, S., Choki, K.: Compact and high-density opto-electronic transceiver module for chip-to-chip optical interconnects. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1–3. Sumitomo (2011)Google Scholar
  20. 20.
    Nieweglowski, K., Rieske, R., Wolter, K.J.: Demonstration of board-level optical link with ceramic optoelectronic multi-chip module. In: Proceedings of IEEE 59th Electronic Components and Technology Conference (ECTC), pp. 1879–1886 (2009)Google Scholar
  21. 21.
    Nieweglowski, K., Rieske, R., Wolter, K.J.: Assembly requirements for multi-channel coupling micro-optics in board-level optical interconnects. In: 3rd Electronic System-Integration Technology Conference (ESTC), pp. 1–6 (2010). doi: 10.1109/ESTC.2010.5642814
  22. 22.
    Palaniappan, A., Palermo, S.: Power efficiency comparisons of interchip optical interconnect architectures. IEEE Trans. Circuits Syst. II Express Br. 57(5), 343–347 (2010). doi: 10.1109/TCSII.2010.2047319 CrossRefGoogle Scholar
  23. 23.
    Pepeljugoski, P., Kash, J., Doany, F., Kuchta, D., Schares, L., Schow, C., Taubenblatt, M., Offrein, B., Benner, A.: Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects. In: 36th European Conference and Exhibition on Optical Communication (ECOC), pp. 1–14. IBM (2010). doi: 10.1109/ECOC.2010.5621097
  24. 24.
    Pinguet, T., Analui, B., Balmater, E., Guckenberger, D., Harrison, M., Koumans, R., Kucharski, D., Liang, Y., Masini, G., Mekis, A., Mirsaidi, S., Narasimha, A., Peterson, M., Rines, D., Sadagopan, V., Sahni, S., Sleboda, T., Song, D., Wang, Y., Welch, B., Witzens, J., Yao, J., Abdalla, S., Gloeckner, S., De Dobbelaere, P., Capellini, G.: Monolithically integrated high-speed CMOS photonic transceivers. In: 5th IEEE International Conference on Group IV Photonics, pp. 362–364. Luxtera (2008). doi: 10.1109/GROUP4.2008.4638200
  25. 25.
    Roelkens, G., Vermeulen, D., Van Laere, F., Selvaraja, S., Scheerlinck, S., Taillaert, D., Bogaerts, W., Dumon, P., Van Thourhout, D., Baets, R.: Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures. J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010). doi: 10.1166/jnn.2010.2031 CrossRefGoogle Scholar
  26. 26.
    Rolston, D., Varano, R.: Light on board-optical IC packaging. In: Photonics Society Summer Topical Meeting Series, IEEE, pp. 229–230. Reflex Photonics (2010). doi: 10.1109/PHOSST.2010.5553698
  27. 27.
    Roscher, H., Rinaldi, F., Michalzik, R.: Small-pitch Flip-Chip-bonded VCSEL arrays enabling transmitter redundancy and monitoring in 2-D 10-Gbit/s space-parallel fiber transmission. IEEE J. Sel. Top. Quantum Electron. 13(5), 1279–1289 (2007). doi: 10.1109/JSTQE.2007.905150 CrossRefGoogle Scholar
  28. 28.
    Schaub, J.D., Csutak, S.M., Yang, B., Campbell, J.C., Rogers, D.L., Yang, M., Kuchta, D.M., Zier, S.J., Sorna, M.: High-speed optical receivers in advanced silicon technologies. In: Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, vol. 2, pp. 772–773. IBM (2002). doi: 10.1109/LEOS.2002.1159535
  29. 29.
    Scheibenreif, J., Noble, B., Dallesasse, J.: Flexible substrate for routing fibers in an optical transceiver. US Patent 6974260, 13 Dec 2005Google Scholar
  30. 30.
    Schmid, G., Leeb, W., Langer, G., Schmidt, V., Houbertz, R.: Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards. Electron. Lett. 45(4), 219–221 (2009). doi: 10.1049/el:20093661 CrossRefGoogle Scholar
  31. 31.
    Schroder, H., Arndt-Staufenbiel, N., Brusberg, L.: “glasspack”—photonic packaging using thin glass foils for electrical-optical circuit boards (EOCB) and sensor modules. In: 2nd Electronics Systemintegration Technology Conference, pp. 1245–1250. FhG IZM, IEEE (2008). doi: 10.1109/ESTC.2008.4684532
  32. 32.
    Streppel, U., Dannberg, P., Waechter, C., Braeuer, A., Nicole, P., Froehlich, L., Houbertz, R., Popall, M.: Development of a new fabrication method for stacked optical waveguides using inorganic-organic copolymers. In: First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, pp. 329–335 (2001). doi: 10.1109/POLYTR.2001.973304
  33. 33.
    Sun, H.B., Kawata, S.: Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. J. Lightwave Technol. 21(3), 624–633 (2003). doi: 10.1109/JLT.2003.809564 CrossRefGoogle Scholar
  34. 34.
    Vlasov, Y.: Silicon photonics for next generation computing systems—tutorial. In: 34th European Conference on Optical Communication (ECOC), pp. 1–27 (2008)Google Scholar
  35. 35.
    Vlasov, Y., Green, W.M.J., Xia, F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2, 242–246 (2008). doi: 10.1038/nphoton.2008.31 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electronics Packaging LaboratoryTechnische Universität DresdenDresdenGermany

Personalised recommendations