DC Electrodes for Cell Applications

  • Jonathan Derix
  • Srikanth Perike


DCMEAs are microelectrode arrays (MEAs) capable of measuring and application of direct currents. The need for these kind of devices arose from the discovery, that small endogenous dc currents play a big role in various biological processes, such as wound healing and embryonic development. In this chapter, one possible implementation of DCMEAs is presented. The first sections deal with the construction and physical characterisation of the DCMEA-chip. To demonstrate the new application possibilities, a biological experiment is described in which a DCMEA is used to study intracellular ion currents. Calvaria cells are cultivated on the chip and stimulated with a direct current. During the stimulation, ion concentration is monitored using real time fluorescence microscopy.


Focal Adhesion Porous Membrane Microfluidic Channel Microelectrode Array PDMS Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Apel, P.: Track etching technique in membrane technology. Radiat. Meas. 34(1–6), 559–566 (2001)CrossRefGoogle Scholar
  2. 2.
    Baaken, G., Sondermann, M., Schlemmer, C., Rühe, J., Behrends, J.C.: Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8(6), 938–944 (2008)CrossRefGoogle Scholar
  3. 3.
    Bogdanski, N., Wissen, M., Möllenbeck, S., Scheer, H.C.: Thermal imprint with negligibly low residual layer. J. Vac. Sci. Technol. B 24, 2998 (2006)Google Scholar
  4. 4.
    Brown, M.J., Loew, L.M.: Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127(1), 117 (1994)CrossRefGoogle Scholar
  5. 5.
    Chang, P.C., Sulik, G.I., Soong, H.K., Parkinson, W.C.: Galvanotropic and galvanotaxic responses of corneal endothelial cells. J. Formos. Med. Assoc. 95(8), 623 (1996)Google Scholar
  6. 6.
    Derix, J., Gerlach, G., Perike, S., Wetzel, S., Funk, R.W.H.: Biocompatible DC-microelectrode array. In: 2nd Electronics Systemintegration Technology Conference (ESTC), pp. 441–446 (2008)Google Scholar
  7. 7.
    Derix, J., Gerlach, G., Wetzel, S., Perike, S., Funk, R.W.H.: Porous polyethylene terephthalate membranes in microfluidic applications. Phys. Status Solidi A 206(3), 442–448 (2009)CrossRefGoogle Scholar
  8. 8.
    Eddings, M.A., Johnson, M.A., Gale, B.K.: Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6) (2008).Google Scholar
  9. 9.
    Farboud, B., Nuccitelli, R., Schwab, I.R., Isseroff, R.R.: DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp. Eye Res. 70(5), 667–673 (2000)CrossRefGoogle Scholar
  10. 10.
    Fox, M.B., Esveld, D.C., Valero, A., Luttge, R., Mastwijk, H.C., Bartels, P.V., Van Den Berg, A., Boom, R.M.: Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385(3), 474–485 (2006)CrossRefGoogle Scholar
  11. 11.
    Fromherz, P.: Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem 3(3), 276 (2002)CrossRefGoogle Scholar
  12. 12.
    Funk, R.H.W., Monsees, T., özkucur, N.: Electromagnetic effects-from cell biology to medicine. Prog. Histochem. Cytochem. 43(4), 177–264 (2009)CrossRefGoogle Scholar
  13. 13.
    Gast, F.U., Dittrich, P.S., Schwille, P., Weigel, M., Mertig, M., Opitz, J., Queitsch, U., Diez, S., Lincoln, B., Wottawah, F., et al.: The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid. Nanofluid. 2(1), 21–36 (2006)CrossRefGoogle Scholar
  14. 14.
    Hamerli, P., Weigel, T., Groth, T., Paul, D.: Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 24(22), 3989–3999 (2003)CrossRefGoogle Scholar
  15. 15.
    Hinkle, L.: The direction of groth of differentiating neurones and myoblasts from frag embryos in an applied electric field. J. Physiol. 314, 121–135 (1981)Google Scholar
  16. 16.
    Hynes, R.O.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1), 11–25 (1992)CrossRefGoogle Scholar
  17. 17.
    Jay, D.G.: Role of band 3 in homeostasis and cell shape. Cell 86(6), 853–854 (1996)CrossRefGoogle Scholar
  18. 18.
    Karba, R., Semrov, D., Vodovnik, L., Benko, H., Savrin, R.: DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochem. Bioenerg. 43(2), 256–70 (1997)CrossRefGoogle Scholar
  19. 19.
    McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85(3), 943 (2005)CrossRefGoogle Scholar
  20. 20.
    McCreery, D.B., Agnew, W.F., Yuen, T.G.H., Bullara, L.A.: Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann. Biomed. Eng. 16(5), 463–481 (1988)CrossRefGoogle Scholar
  21. 21.
    Monsees, T.K., Barth, K., Tippelt, S., Heidel, K., Gorbunov, A., Pompe, W., Funk, R.H.W.: Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180(2), 81–95 (2005)CrossRefGoogle Scholar
  22. 22.
    Nordström, T., Rotstein, O.D., Romanek, R., Asotra, S., Heersche, J.N.M., Manolson, M.F., Brisseau, G.F., Grinstein, S.: Regulation of cytoplasmic pH in osteoclasts. J. Biol. Chem. 270(5), 2203 (1995)CrossRefGoogle Scholar
  23. 23.
    Nuccitelli, R.: Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosim. 106(4), 375 (2003)CrossRefGoogle Scholar
  24. 24.
    özkucur, N., Monsees, T., Perike, S., Do, H.Q., Funk, R.H.W.: Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS One 4(7) (2009)Google Scholar
  25. 25.
    Phelan, M.C.: Basic techniques in mammalian cell tissue culture. Curr. Protoc. Cell. Biol. 36, 1.1.1–1.1.18 (2007)Google Scholar
  26. 26.
    Ramos-Vara, J.A.: Technical aspects of immunohistochemistry. Veterinary Pathology Online 42(4), 405 (2005)CrossRefGoogle Scholar
  27. 27.
    Reid, B., Nuccitelli, R., Zhao, M.: Non-invasive measurement of bioelectric currents with a vibrating probe. Nat. Protoc. 2(3), 661–669 (2007)CrossRefGoogle Scholar
  28. 28.
    Rolland, J.P., Hagberg, E.C., Denison, G.M., Carter, K.R., DeSimone, J.M.: High-resolution soft lithography: enabling materials for nanotechnologies. Angew. Chem. Int. Ed. 43(43), 5796–5799 (2004)CrossRefGoogle Scholar
  29. 29.
    Sarkadi, B., Parker, J.C.: Activation of ion transport pathways by changes in cell volume. Biochim. Biophys. Acta. Rev. Biomembr. 1071(4), 407–427 (1991)Google Scholar
  30. 30.
    Sawada, S., Masuda, Y., Zhu, P., Koumoto, K.: Micropatterning of copper on a poly (ethylene terephthalate) substrate modified with a self-assembled monolayer. Langmuir 22(1), 332–337 (2006)CrossRefGoogle Scholar
  31. 31.
    Takahashi, K., Itoh, A., Nakamura, T., Tachibana, K.: Radical kinetics for polymer film deposition in fluorocarbon (\({\rm C}_4{\rm F}_8\), \({\rm C}_3{\rm F}_6\) and \({\rm C}_5{\rm F}_8\)) plasmas. Thin Solid Films 374(2), 303–310 (2000)CrossRefGoogle Scholar
  32. 32.
    Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113 (2000)CrossRefGoogle Scholar
  33. 33.
    Vanhaesebroeck, B.: Charging the batteries to heal wounds through PI3K. Nat. Chem. Biol. 2(9), 453–455 (2006)CrossRefGoogle Scholar
  34. 34.
    Wang, H.Y., Lu, C.: Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 78(14), 5158–5164 (2006)CrossRefGoogle Scholar
  35. 35.
    Waxman, S.G., Dib-Hajj, S., Cummins, T.R., Black, J.A.: Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states. Brain Res. 886(1–2), 5–14 (2000)CrossRefGoogle Scholar
  36. 36.
    Zhao, M., Pu, J., Forrester, J.V., McCaig, C.D.: Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16(8), 857–859 (2002)Google Scholar
  37. 37.
    Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., et al.: Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-and PTEN. Nature 442, 457–460 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Solid-State Electronics LaboratoryTechnische Universität DresdenDresdenGermany
  2. 2.Medical Faculty “Carl Gustav Carus”, Institute of AnatomyTechnische Universität DresdenDresdenGermany

Personalised recommendations