Packaging in Synthetic Biology

Chapter

Abstract

In modern biosciences, the biological cell is perceived as a mechanistic system similar to a factory or a highly integrated technical device consisting of a set of different interacting machines which are built from parts acting by mechanical and even electronic means. In this concept, the biological cell represents an extraordinary example for a high level of packaging which is without comparison in technical disciplines created by mankind. Concerning packaging the cell membrane plays a crucial role since it does not only define the spatial boundary of the cell but also provides the platform for many functional elements and regulates the communication of the cell with the environment and neighboring cells. Furthermore, biological matter as a machinery shows characteristics that makes it preferable over technical machinery, namely the capability of adaption, self-repair, self-assembly and even self-replication. If one is interested not only in investigating this issue but is interested in an engineering approach to build functional systems following the biological concept of packaging, the bottom-up synthetic biology is the choice of method. This chapter presents approaches in synthetic biology using biomembranes and membrane proteins for biological packaging.

Keywords

Lipid Bilayer Synthetic Biology Functional Element Biological Cell Fluorescence Recovery After Photobleaching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrahams, J.P., Leslie, A.G., Lutter, R., Walker, J.E.: Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491), 621–628 (1994)CrossRefGoogle Scholar
  2. 2.
    Akashi, K., Miyata, H., Itoh, H., Kinosita, K.: Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71(6), 3242–3250 (1996)CrossRefGoogle Scholar
  3. 3.
    Alberts, B., Bray, D., Lewis, J.: Molecular Biology of the Cell. Taylor & Francis, London (2002)Google Scholar
  4. 4.
    Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. Chem. Soc. 81(81), 303–311 (1986)CrossRefGoogle Scholar
  5. 5.
    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16(9), 1055–1069 (1976)CrossRefGoogle Scholar
  6. 6.
    Bachmann, P.A., Luisi, P.L., Lang, J.: Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357(6373), 57–59 (1992)CrossRefGoogle Scholar
  7. 7.
    Bacia, K., Schwille, P., Kurzchalia, T.: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U. S. A. 102(9), 3272–3277 (2005)CrossRefGoogle Scholar
  8. 8.
    Bayley, H., Cronin, B., Heron, A., Holden, M.A., Hwang, W.L., Syeda, R., Thompson, J., Wallace, M.: Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2009)CrossRefGoogle Scholar
  9. 9.
    Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S.: Living technology: exploiting life’s principles in technology. Artif. Life 16(1), 89–97 (2010)CrossRefGoogle Scholar
  10. 10.
    Benes, M., Billy, D., Benda, A., Speijer, H., Hof, M., Hermens, W.T.: Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Langmuir 20(23), 10,129–10,137 (2004)Google Scholar
  11. 11.
    Bertoncello, P., Nicolini, D., Paternolli, C., Bavastrello, V., Nicolini, C.: Bacteriorhodopsin-based Langmuir–Schaefer films for solar energy capture. IEEE Trans. Nanobiosci. 2(2), 124–132 (2003)CrossRefGoogle Scholar
  12. 12.
    Bezrukov, S.M., Kullman, L., Winterhalter, M.: Probing sugar translocation through maltoporin at the single channel level. FEBS Lett. 476(3), 224–228 (2000)CrossRefGoogle Scholar
  13. 13.
    Bi, E.F., Lutkenhaus, J.: FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349), 161–164 (1991)CrossRefGoogle Scholar
  14. 14.
    Born, M.: Volumen und Hydratationswärme der Ionen. Z. Phys. A: Hadrons Nucl. 1, 45–48 (1920)Google Scholar
  15. 15.
    Castile, J.D., Taylor, K.M.: Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion. Int. J. Pharm. 188(1), 87–95 (1999)CrossRefGoogle Scholar
  16. 16.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)CrossRefGoogle Scholar
  17. 17.
    Chen, I.A., Roberts, R.W., Szostak, J.W.: The emergence of competition between model protocells. Science 305(5689), 1474–1476 (2004)CrossRefGoogle Scholar
  18. 18.
    Chiantia, S., Ries, J., Schwille, P.: Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim. Biophys. Acta 1788(1), 225–233 (2009)CrossRefGoogle Scholar
  19. 19.
    Cook, G.M., Keis, S., Morgan, H.W., von Ballmoos, C., Matthey, U., Kaim, G., Dimroth, P.: Purification and biochemical characterization of the \({\rm F}_1{\rm F}_o\)-ATP synthase from thermoalkaliphilic bacillus sp. strain TA2.A1. J. Bacteriol. 185(15), 4442–4449 (2003)CrossRefGoogle Scholar
  20. 20.
    Coons, A.H., Creech, H.J., Jones, R.N., Berliner, E.: The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45(3), 159–170 (1942)Google Scholar
  21. 21.
    Cowan, S.W., Garavito, R.M., Jansonius, J.N., Jenkins, J.A., Karlsson, R., König, N., Pai, E.F., Pauptit, R.A., Rizkallah, P.J., Rosenbusch, J.P.: The structure of OmpF porin in a tetragonal crystal form. Structure 3(10), 1041–1050 (1995)CrossRefGoogle Scholar
  22. 22.
    Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., Rosenbusch, J.P.: Crystal structures explain functional properties of two E. coli porins. Nature 358(6389), 727–733 (1992)CrossRefGoogle Scholar
  23. 23.
    Dajkovic, A., Lutkenhaus, J.: Z ring as executor of bacterial cell division. J. Mol. Microbiol. Biotechnol. 11(3–5), 140–151 (2006)CrossRefGoogle Scholar
  24. 24.
    Danelon, C., Suenaga, A., Winterhalter, M., Yamato, I.: Molecular origin of the cation selectivity in OmpF porin: single channel conductances versus free energy calculation. Biophys. Chem. 104(3), 591–603 (2003)CrossRefGoogle Scholar
  25. 25.
    Eigen, M., Rigler, R.: Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994)CrossRefGoogle Scholar
  26. 26.
    García-Sáez, A.J., Carrer, D.C., Schwille, P.: Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol. Biol. 606, 493–508 (2010)CrossRefGoogle Scholar
  27. 27.
    Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., Merryman, C., Young, L., Noskov, V.N., Glass, J.I., Venter, J.C., Hutchison, C.A., Smith, H.O.: Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science 319(5867), 1215–1220 (2008)CrossRefGoogle Scholar
  28. 28.
    Gilbert, W.: Origin of life: The RNA world. Nature 319(6055), 618 (1986)CrossRefGoogle Scholar
  29. 29.
    Girard, P., Pécréaux, J., Lenoir, G., Falson, P., Rigaud, J.L., Bassereau, P.: A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87(1), 419–429 (2004)CrossRefGoogle Scholar
  30. 30.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391(2), 85–100 (1981)CrossRefGoogle Scholar
  31. 31.
    Hanczyc, M.M., Szostak, J.W.: Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8(6), 660–4 (2004)CrossRefGoogle Scholar
  32. 32.
    Hanke, W., Schlue, W.R.: Planar Lipid Bilayers: Methods and Applications. Academic Press, London (1993)Google Scholar
  33. 33.
    Hennesthal, C., Drexler, J., Steinem, C.: Membrane-suspended nanocompartments based on ordered pores in alumina. Chem. Phys. Chem. 3(10), 885–889 (2002)CrossRefGoogle Scholar
  34. 34.
    Hennesthal, C., Steinem, C.: Pore-spanning lipid bilayers visualized by scanning force microscopy. J. Am. Chem. Soc. 122(33), 8085–8086 (2000)CrossRefGoogle Scholar
  35. 35.
    Hille, B.: Ion Channels of Excitable Membranes. Sinauer Associates Inc, Sunderland (2001)Google Scholar
  36. 36.
    Holloway, P.W.: A simple procedure for removal of Triton X-100 from protein samples. Anal. Biochem. 53(1), 304–308 (1973)CrossRefGoogle Scholar
  37. 37.
    Inouye, S., Tsuji, F.I.: Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341(2–3), 277–280 (1994)CrossRefGoogle Scholar
  38. 38.
    Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, London (1991)Google Scholar
  39. 39.
    Kahya, N., Pécheur, E.I., de Boeij, W.P., Wiersma, D.A., Hoekstra, D.: Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys. J. 81(3), 1464–1474 (2001)CrossRefGoogle Scholar
  40. 40.
    Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., Schwille, P.: Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278(30), 28,109–28,115 (2003).Google Scholar
  41. 41.
    Kahya, N., Scherfeld, D., Bacia, K., Schwille, P.: Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147(1), 77–89 (2004)CrossRefGoogle Scholar
  42. 42.
    Kahya, N., Wiersma, D.A., Poolman, B., Hoekstra, D.: Spatial organization of bacteriorhodopsin in model membranes. Light-induced mobility changes. J. Biol. Chem. 277(42), 39,304–39,311 (2002)Google Scholar
  43. 43.
    Kushwaha, S.C., Kates, M.: Isolation and identification of “bacteriorhodopsin” and minor c40-carotenoids in halobacterium cutirubrum. Biochim. Biophys. Acta 316(2), 235–243 (1973)CrossRefGoogle Scholar
  44. 44.
    Lasic, D.D.: The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (1988)Google Scholar
  45. 45.
    Lazebnik, Y.: Can a biologist fix a radio?—Or, what I learned while studying apoptosis, (Cancer Cell. 2002 Sep, 2(3), pp. 179–182). Biochemistry 69(12), 1403–1406 (2004)Google Scholar
  46. 46.
    Loakes, D., Holliger, P.: Darwinian chemistry: towards the synthesis of a simple cell. Mol. BioSyst. 5(7), 686–694 (2009)CrossRefGoogle Scholar
  47. 47.
    Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K., Schwille, P.: Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320(5877), 789–792 (2008)CrossRefGoogle Scholar
  48. 48.
    Luisi, P.L.: About various definitions of life. Orig. Life Evol. Biosph. 28(4–6), 613–622 (1998)CrossRefGoogle Scholar
  49. 49.
    Luisi, P.L.: Toward the engineering of minimal living cells. Anat. Rec. 268(3), 208–214 (2002)CrossRefGoogle Scholar
  50. 50.
    Mach, T., Chimerel, C., Fritz, J., Fertig, N., Winterhalter, M., Fütterer, C.: Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion. Anal. Bioanal. Chem. 390(3), 841–846 (2008)CrossRefGoogle Scholar
  51. 51.
    Magde, D., Webb, W.W., Elson, E.: Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29(11), 705 (1972)CrossRefGoogle Scholar
  52. 52.
    Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Artificial cell division. Biosystems 76(1–3), 157–167 (2004)CrossRefGoogle Scholar
  53. 53.
    Merkle, D., Kahya, N., Schwille, P.: Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. Chem. Bio. Chem. 9(16), 2673–2681 (2008)Google Scholar
  54. 54.
    Mey, I., Stephan, M., Schmitt, E.K., Müller, M.M., Amar, M.B., Steinem, C., Janshoff, A.: Local membrane mechanics of pore-spanning bilayers. J. Am. Chem. Soc. 131(20), 7031–7039 (2009)CrossRefGoogle Scholar
  55. 55.
    Miller, C.: Ion Channel Reconstitution. Plenum Press, New York (1986)Google Scholar
  56. 56.
    Montal, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U. S. A. 69(12), 3561–3566 (1972)CrossRefGoogle Scholar
  57. 57.
    Montes, L.R., Alonso, A., Goni, F.M., Bagatolli, L.A.: Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93(10), 3548–3554 (2007)CrossRefGoogle Scholar
  58. 58.
    Mueller, P., Rudin, D., Tien, H., Wescott, W.: Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962)CrossRefGoogle Scholar
  59. 59.
    Neumann, S., Fuchs, A., Mulkidjanian, A., Frishman, D.: Current status of membrane protein structure classification. Proteins 78(7), 1760–1773 (2010)Google Scholar
  60. 60.
    Noji, H., Yasuda, R., Yoshida, M., Kinosita, K.: Direct observation of the rotation of F1-ATPase. Nature 386(6622), 299–302 (1997)CrossRefGoogle Scholar
  61. 61.
    Oberholzer, T., Luisi, P.L.: The use of liposomes for constructing cell models. J. Biol. Phys. 28(4), 733–744 (2002)CrossRefGoogle Scholar
  62. 62.
    Oesterhelt, D., Stoeckenius, W.: Rhodopsin—like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233(39), 149–152 (1971)Google Scholar
  63. 63.
    Parsegian, A.: Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221(5183), 844–846 (1969)CrossRefGoogle Scholar
  64. 64.
    Paternostre, M.T., Roux, M., Rigaud, J.L.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27(8), 2668–2677 (1988)CrossRefGoogle Scholar
  65. 65.
    de Planque, M.R.R., de Planque, M.R.R., Mendes, G.P., Zagnoni, M., Sandison, M.E., Fisher, K.H., Berry, R.M., Watts, A., Morgan, H.: Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion. IEEE Proc. Nanobiotechnol. 153(2), 21–30 (2006)CrossRefGoogle Scholar
  66. 66.
    Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J.: Primary structure of the aequorea victoria green-fluorescent protein. Gene 111(2), 229–233 (1992)CrossRefGoogle Scholar
  67. 67.
    Rajendran, L., Simons, K.: Lipid rafts and membrane dynamics. J. Cell Sci. 118(Pt 6), 1099–1102 (2005)CrossRefGoogle Scholar
  68. 68.
    Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedau, M.A.: Evolution. Transitions from nonliving to living matter. Science 303(5660), 963–965 (2004)Google Scholar
  69. 69.
    Rayfield, G.W.: Photodiodes based on bacteriorhodopsin. In: R.R. Birge (ed.) Molecular and biomolecular electronics. Adv. Chem. Ser. 240, 561–575 (1994)Google Scholar
  70. 70.
    Reeves, J.P., Dowben, R.M.: Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 73(1), 49–60 (1969)CrossRefGoogle Scholar
  71. 71.
    Rigaud, J.L., Lévy, D.: Detergent removal by non-polar polystyrene beads: applications to membrane protein reconstitution and two-dimensional crystallization. Eur. Biophys. 27, 2677–2688 (1998)Google Scholar
  72. 72.
    Rigaud, J.L., Lévy, D.: Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003)CrossRefGoogle Scholar
  73. 73.
    Rigaud, J.L., Paternostre, M.T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27(8), 2677–2688 (1988)CrossRefGoogle Scholar
  74. 74.
    Rostovtseva, T.K., Bezrukov, S.M.: ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74(5), 2365–2373 (1998)CrossRefGoogle Scholar
  75. 75.
    Rothfield, L., Taghbalout, A., Shih, Y.L.: Spatial control of bacterial division-site placement. Nat. Rev. Microbiol. 3(12), 959–968 (2005)CrossRefGoogle Scholar
  76. 76.
    Sackmann, E., Träuble, H.: Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J. Am. Chem. Soc. 94(13), 4482–91 (1972)CrossRefGoogle Scholar
  77. 77.
    Sakmann, B., Neher, E.: Singel-Channel Recording. Plenum Press, New York (1995)Google Scholar
  78. 78.
    Schindler, H.: Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122(1), 77–79 (1980)CrossRefGoogle Scholar
  79. 79.
    Schmidt, C., Mayer, M., Vogel, H.: A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Ed. 39(17), 3137–3140 (2000)CrossRefGoogle Scholar
  80. 80.
    Schwille, P., Diez, S.: Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44(4), 223–242 (2009)CrossRefGoogle Scholar
  81. 81.
    Schwille, P., Oehlenschläger, F., Walter, N.G.: Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35(31), 10,182–10,193 (1996)Google Scholar
  82. 82.
    Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Orig. Life Evol. Biosph. 31(1–2), 119–145 (2001)CrossRefGoogle Scholar
  83. 83.
    Shirmomura, O., Johnson, F.H., Saiga, Y.: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea. J. Cell Comp. Physiol. 59, 223–239 (1962)CrossRefGoogle Scholar
  84. 84.
    Simons, K., Vaz, W.L.C.: Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004)CrossRefGoogle Scholar
  85. 85.
    Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175(23), 720–731 (1972)CrossRefGoogle Scholar
  86. 86.
    Stachowiak, J.C., Richmond, D.L., Li, T.H., Liu, A.P., Parekh, S.H., Fletcher, D.A.: Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci. U. S. A. 105(12), 4697–4702 (2008)CrossRefGoogle Scholar
  87. 87.
    Stock, D., Leslie, A.G., Walker, J.E.: Molecular architecture of the rotary motor in ATP synthase. Science 286(5445), 1700–1705 (1999)CrossRefGoogle Scholar
  88. 88.
    Streif, S., Staudinger, W.F., Marwan, W., Oesterhelt, D.: Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384(1), 1–8 (2008)CrossRefGoogle Scholar
  89. 89.
    Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409(6818), 387–390 (2001)Google Scholar
  90. 90.
    Takakura, K., Toyota, T., Sugawara, T.: A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125(27), 8134–8140 (2003)Google Scholar
  91. 91.
    Tamm, L.K., McConnell, H.M.: Supported phospholipid bilayers. Biophys. J. 47(1), 105–113 (1985)CrossRefGoogle Scholar
  92. 92.
    Varnier, A., Kermarrec, F., Blesneac, I., Moreau, C., Liguori, L., Lenormand, J.L., Picollet-D’hahan, N.: A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles. J. Membr. Biol. 233(1–3), 85–92 (2010)Google Scholar
  93. 93.
    Vereb, G., Szöllosi, J., Matkó, J., Nagy, P., Farkas, T., Vigh, L., Mátyus, L., Waldmann, T.A., Damjanovich, S.: Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8053–8058 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jakob Schweizer
    • 1
  • Matthias Garten
    • 1
  • Petra Schwille
    • 1
  1. 1.Biotechnology CenterTechnische Universität DresdenDresdenGermany

Personalised recommendations