Skip to main content

Self-Assembly of Nanowire-Based Field-Effect Transistors

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices

Abstract

Due to their superior electronic properties, carbon nanotubes are considered as specific candidates for future nanoelectronics. In this chapter we demonstrate that carbon nanotube-based field-effect transistors with an excellent electrical performance can be assembled bottom-up by applying alternating-current dielectrophoresis which constitutes a huge step forward into the direction of application of carbon nanotubes. Dielectrophoresis is known as a versatile tool for the manipulation of suspended particles in electrical fields. Here we use dielectrophoresis for various tasks related to the development of self-assembly strategies for the fabrication of carbon nanotube-based field-effect transistors: (1) Assembly of interconnects in a very controlled manner, (2) sorting of carbon nanotubes according to their electronic type and (3) reduction of the high contact resistance between the electrodes and the CNT by applying a second dielectrophoresis step with aqueous metal salt solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)

    Article  CAS  Google Scholar 

  2. Avouris, P.: Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002)

    Article  CAS  Google Scholar 

  3. Avouris, P., Chen, Z., Perebeinos, V.: Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007)

    Article  CAS  Google Scholar 

  4. Chen, C., Xu, D., Kong, E.S.W., Zhang, Y.: Multichannel carbon-nanotube FETs and complementary logic gates with nanowelded contacts. IEEE Electron Device Lett. 27, 852–855 (2006)

    Article  Google Scholar 

  5. Cheng, C., Gonela, R.K., Gu, Q., Haynie, D.T.: Self-assembly of metallic nanowires from aqueous solution. Nano Lett. 5, 175–178 (2005)

    Article  CAS  Google Scholar 

  6. Dong, L., Bush, J., Chirayos, V., Solanki, R., Jiao, J., Ono, Y., Conley, J.F., Ulrich, B.D.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112–2115 (2005)

    Article  CAS  Google Scholar 

  7. Ermolina, I., Morgan, H.: The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J. Colloid Interface Sci. 285, 419–428 (2005)

    Article  CAS  Google Scholar 

  8. Fleurier, R., Lauret, J.S., Lopez, U., Loiseau, A.: Transmission electron microscopy and UV-vis-IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Adv. Funct. Mater. 19, 2219–2223 (2009)

    Article  CAS  Google Scholar 

  9. Franklin, N.R., Dai, H.: An enhanced CVD approach to extensive nanotube networks with directionality. Adv. Mater. 12, 890–894 (2000)

    Article  CAS  Google Scholar 

  10. Garg, A., Sinnott, S.B.: Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 295, 273–278 (1998)

    Article  CAS  Google Scholar 

  11. Green, A., Duch, M., Hersam, M.: Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2, 69–77 (2009)

    Article  CAS  Google Scholar 

  12. Heller, D.A., Mayrhofer, R.M., Baik, S., Grinkova, Y.V., Usrey, M.L., Strano, M.S.: Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004)

    Google Scholar 

  13. Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001)

    Article  CAS  Google Scholar 

  14. Hong, S., Jung, S., Choi, J., Kim, Y., Baik, S.: Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes. Langmuir 23(9), 4749–4752 (2007)

    Article  CAS  Google Scholar 

  15. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  16. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)

    Article  CAS  Google Scholar 

  17. Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett 4, 1319–1322 (2004)

    Article  CAS  Google Scholar 

  18. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  CAS  Google Scholar 

  19. Jones, T.B.: Electromechanism of Particles. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Kim, S.N., Kuang, Z., Grote, J.G., Farmer, B.L., Naik, R.R.: Enrichment of (6,5) single wall carbon nanotubes using genomic DNA. Nano Lett. 8, 4415–4420 (2008)

    Google Scholar 

  21. Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., Dai, H.: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003)

    Article  CAS  Google Scholar 

  22. Kim, Y., Hong, S., Jung, S., Strano, M., Choi, J., Baik, S.: Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. J. Phys. Chem. B 110, 1541–1545 (2006)

    Article  CAS  Google Scholar 

  23. Krupke, R., Hennrich, F., Kappes, M.M., von Löhneysen, H.: Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004)

    Google Scholar 

  24. Krupke, R., Hennrich, F., von Löhneysen, H., Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)

    Google Scholar 

  25. Lin, Y.M., Appenzeller, J., Chen, Z., Chen, Z.G., Cheng, H.M., Avouris, P.: High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Electron Device Lett. 26, 823–825 (2005)

    Article  Google Scholar 

  26. Lumsdon, S.O., Scott, D.M.: Assembly of colloidal particles into microwires using an alternating electric field. Langmuir 21, 4874–4880 (2005)

    Article  CAS  Google Scholar 

  27. Matarredona, O., Rhoads, H., Li, Z., Harwell, J.H., Balzano, L., Resasco, D.E.: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003)

    Google Scholar 

  28. Mesquida, P., Stemmer, A.: Maskless nanofabrication using the electrostatic attachment of gold particles to electrically patterned surfaces. Microelectron. Eng. 61–62, 671–674 (2002)

    Article  Google Scholar 

  29. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003)

    Article  CAS  Google Scholar 

  30. Nelson, B.A., King, W.P., Laracuente, A.R., Sheehan, P.E., Whitman, L.J.: Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett. 88, 033104 (2006)

    Article  Google Scholar 

  31. Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1951)

    Article  CAS  Google Scholar 

  32. Posseckardt, J., Battie, Y., Fleurier, R., Lauret, J.S., Loiseau, A., Jost, O., Mertig, M.: Improved sorting of carbon nanotubes according to electronic structure using density gradient ultracentrifugation. Phys. Status solidi B. 247, 2687–2690 (2010)

    Google Scholar 

  33. Ranjan, N., Mertig, M.: Dielectrophoretically assembled carbon nanotube-metal hybrid structures with reduced contact resistance. Phys. Status Solidi B 245, 2311–2314 (2008)

    Article  CAS  Google Scholar 

  34. Ranjan, N., Vinzelberg, H., Mertig, M.: Growing one-dimensional metallic nanowires by dielectrophoresis. Small 2, 1490–1496 (2006)

    Article  CAS  Google Scholar 

  35. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W., Mioskowski, C.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003)

    Article  CAS  Google Scholar 

  36. Rispal, L., Schwalke, U.: Large-scale in situ fabrication of voltage-programmable dual-layer high-\(\kappa \) dielectric carbon nanotube memory devices with high on/off ratio. IEEE Electron Device Lett. 29, 1349–1352 (2008)

    Article  CAS  Google Scholar 

  37. Seemann, L., Stemmer, A., Naujoks, N.: Selective deposition of functionalized nano-objects by nanoxerography. Microelectron. Eng. 84, 1423–1426 (2007)

    Article  CAS  Google Scholar 

  38. Snow, E.S., Novak, J.P., Campbell, P.M., Park, D.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82, 2145–2147 (2003)

    Article  CAS  Google Scholar 

  39. Strano, M.S., Zheng, M., Jagota, A., Onoa, G.B., Heller, D.A., Barone, P.W., Usrey, M.L.: Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 4, 543–550 (2004)

    Article  CAS  Google Scholar 

  40. Taeger, S., Jost, O., Pompe, W., Mertig, M.: Purification and dispersion of carbon nanotubes by sidewall functionalization with single-stranded DNA. AIP Conference Proceedings, vol. 723, pp. 185–188 (2004)

    Google Scholar 

  41. Taeger, S., Mertig, M.: Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis. Int. J. Mater. Res. 98, 742–748 (2007)

    CAS  Google Scholar 

  42. Taeger, S., Xuang, L.Y., Guenther, K., Mertig, M.: Noncovalent sidewall functionalization of carbon nanotubes by biomolecules: Single-stranded DNA and hydrophobin. AIP Conference Proceedings, vol. 786, pp. 262–265 (2005)

    Google Scholar 

  43. Tanaka, T., Jin, H., Miyata, Y., Kataura, H.: High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 1, 114001–114003 (2008)

    Google Scholar 

  44. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  45. Tasis, D., Tagmatarchis, N., Georgakilas, V., Prato, M.: Soluble carbon nanotubes. Chem. Eur. J. 9, 4000–4008 (2003)

    Article  CAS  Google Scholar 

  46. Tu, X., Manohar, S., Jagota, A., Zheng, M.: DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009)

    Article  CAS  Google Scholar 

  47. Tummala, N.R., Striolo, A.: SDS surfactants on carbon nanotubes: aggregate morphology. ACS Nano 3, 595–602 (2009)

    Article  CAS  Google Scholar 

  48. Wenseleers, W., Vlasov, I., Goovaerts, E., Obraztsova, E., Lobach, A., Bouwen, A.: Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004)

    Article  CAS  Google Scholar 

  49. Wiltshire, J.G., Li, L.J., Khlobystov, A.N., Padbury, C.J., Briggs, G.A.D., Nicholas, R.J.: Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. Carbon 43, 1151–1155 (2005)

    Article  CAS  Google Scholar 

  50. Yurekli, K., Mitchell, C.A., Krishnamoorti, R.: Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004)

    Article  CAS  Google Scholar 

  51. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  CAS  Google Scholar 

  52. Zheng, M., Semke, E.D.: Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mertig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posseckardt, J., Mertig, M. (2012). Self-Assembly of Nanowire-Based Field-Effect Transistors. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_16

Download citation

Publish with us

Policies and ethics