Nanoparticle-Based Resistors and Conductors

Chapter

Abstract

Conductive polymer composites (CPC) consist of electrical conducting filler particles and an insulating polymer matrix. They combine metal properties like electrical conductivity and plasmonic behavior with typical polymer properties, like transparency and elasticity. The possibilities of CPC lead to a new and fascinating application area of nanoparticle-based resistors and conductors, being characterized by properties that can be tailored over a wide range. This chapter gives an overview over important properties and typical applications of CPC. Major attention is paid to a state-of-the-art technology for the fabrication of polymer nanocomposites by a plasma-enhanced deposition technique. This technology is compatible with the majority of process steps in high-tech industry (e.g. electronics, optics) and allows the deposition of thin fims on the nanometer thickness scale with high accuracy on top of components with almost any geometry. Additionally, the alignment of filler particles in an electric field by dielectrophoresis is discussed in detail. This technique enables a high conductivity of the composite at a low filling degree and in general a precise adjustment of the electric properties.

Keywords

Polymer Composite Percolation Threshold Filler Particle Plasma Polymerization Conductive Adhesive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abbas, S.M., Dixit, A.K., Chatterjee, R., Goel, T.C.: Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)CrossRefGoogle Scholar
  2. 2.
    Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C., Chen, J.: Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303(5–6), 467–474 (1999)CrossRefGoogle Scholar
  3. 3.
    Bernard, L., Calame, M., van der Molen, S.J., Liao, J., Schonenberger, C.: Controlled formation of metallic nanowires via Au nanoparticle ac trapping. Nanotechnology 18(23), 235202 (2007)Google Scholar
  4. 4.
    Berven, C.A., Clarke, L., Mooster, J.L., Wybourne, M.N., Hutchison, J.E.: Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. Adv. Mater. 13(2), 109–113 (2001)CrossRefGoogle Scholar
  5. 5.
    Boote, J.J., Evans, S.D.: Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16(9), 1500–1505 (2005)CrossRefGoogle Scholar
  6. 6.
    Casavant, M.J., Walters, D.A., Schmidt, J.J., Smalley, R.E.: Neat macroscopic membranes of aligned carbon nanotubes. J. Appl. Phys. 93(4), 2153–2156 (2003)CrossRefGoogle Scholar
  7. 7.
    Charton, C., Schiller, N., Fahland, M., Holländer, A., Wedel, A., Noller, K.: Development of high barrier films on flexible polymer substrates. Thin Solid Films 502(1–2), 99–103 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, G., Wang, H., Zhao, W.: Fabrication of highly ordered polymer/graphite flake composite with eminent anisotropic electrical property. Polym. Adv. Technol. 19(8), 1113–1117 (2008)CrossRefGoogle Scholar
  9. 9.
    Ci, L., Manikoth, S.M., Li, X., Vajtai, R., Ajayan, P.M.: Ultrathick freestanding aligned carbon nanotube films. Adv. Mater. 19(20), 3300–3303 (2007)CrossRefGoogle Scholar
  10. 10.
    Cochrane, C., Koncar, V., Lewandowski, M., Dufour, C.: Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4), 473–492 (2007)CrossRefGoogle Scholar
  11. 11.
    Faupel, F., Zaporojtchenko, V., Greve, H., Schuermann, U., Chakravadhanula, V.S.K., Hanisch, C., Kulkarni, A., Gerber, A., Quandt, E., Podschun, R.: Deposition of nanocomposites by plasmas. Contrib. Plasma Phys. 47(7), 537–544 (2007)CrossRefGoogle Scholar
  12. 12.
    Feng, Q.Q., Dang, Z.M., Li, N., Cao, X.L.: Preparation and dielectric property of Ag-PVA nano-composite. Mater. Sci. Eng., B 99(1–3), 325–328 (2003)Google Scholar
  13. 13.
    Grüniger, A., Bieder, A., Sonnenfeld, A., von Rohr, P., Müller, U., Hauert, R.: Influence of film structure and composition on diffusion barrier performance of \({\rm SiO}_{\rm x}\) thin films deposited by PECVD. Surf. Coat. Technol. 200(14–15), 4564–4571 (2006)CrossRefGoogle Scholar
  14. 14.
    Haber, J.A., Krantz, M., Murakami, Z.T.M., Gelves, G.A., Breuer, O., Sundararaj, U.: Preparation of copper nanowire/polymer nanocomposites by melt mixing; surface chemistry and percolation. Abstr. Paper Am. Chem. Soc. 227, U1528 (2004)Google Scholar
  15. 15.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294(5544), 1082–1086 (2001)CrossRefGoogle Scholar
  16. 16.
    Hixon, C.N., Heaphy, B.R.J.: Electrically conducting adhesive. US Patent 2444034 (1948)Google Scholar
  17. 17.
    Hosogai, S., Tsutsumi, H.: Electrospun nickel oxide/polymer fibrous electrodes for electrochemical capacitors and effect of heat treatment process on their performance. J. Power Sources 194(2), 1213–1217 (2009)CrossRefGoogle Scholar
  18. 18.
    Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)CrossRefGoogle Scholar
  19. 19.
    Hurst, S.J., Payne, E.K., Qin, L., Mirkin, C.A.: Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 45(17), 2672–2692 (2006)CrossRefGoogle Scholar
  20. 20.
    Inagaki, N., Tasaka, S., Nozue, Y.: Plasma polymerization of metal acetylacetonates and application for gas sensor devices. J. Appl. Polym. Sci. 45(6), 1041–1048 (1992)CrossRefGoogle Scholar
  21. 21.
    Kang, S.W., Mohanta, S.K., Kim, Y.Y., Cho, H.K.: Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior. Cryst. Growth Des. 8(5), 1458–1460 (2008)CrossRefGoogle Scholar
  22. 22.
    Khanduja, N., Selvarasah, S., Chen, C.L., Dokmeci, M.R., Xiong, X., Makaram, P., Busnaina, A.: Three dimensional controlled assembly of gold nanoparticles using a micromachined platform. Appl. Phys. Lett. 90(8), 083105 (2007)Google Scholar
  23. 23.
    Kim, P., Shi, L., Majumdar, A., Mceuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 8721(21), 215502 (2001)Google Scholar
  24. 24.
    Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., Yumura, M.: Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 14(19), 1380–1383 (2002)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Luo, G., Wei, F., Huang, Y.: Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos. Sci. Technol. 66(7–8), 1022–1029 (2006)CrossRefGoogle Scholar
  26. 26.
    Lin, W., Xi, X.R., Yu, C.S.: Research of silver plating nano-graphite filled conductive adhesive. Synth. Met. 159(7–8), 619–624 (2009)CrossRefGoogle Scholar
  27. 27.
    Lu, J.X., Moon, K.S., Xu, J.W., Wong, C.P.: Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16, 1543–1548 (2006)Google Scholar
  28. 28.
    Lu, J.X., Moon, K.S., Xu, J.W., Wong, C.P.: Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16(16), 1543–1548 (2006)CrossRefGoogle Scholar
  29. 29.
    Ma, A., Mackley, M., Rahatekar, S.: Experimental observation on the flow-induced assembly of carbon nanotube suspensions to form helical bands. Rheol. Acta 46(7), 979–987 (2007)CrossRefGoogle Scholar
  30. 30.
    Martin, C.A., Sandler, J.K.W., Windle, A.H., Schwarz, M.K., Bauhofer, W., Schulte, K., Shaffer, M.S.P.: Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3), 877–886 (2005)CrossRefGoogle Scholar
  31. 31.
    Medalia, A.I., Heckman, F.A.: Morphology of aggregates–2. size and shape factors of carbon black aggregates from electron microscopy. Carbon 7, 567–569 (1969)CrossRefGoogle Scholar
  32. 32.
    Nocke, A., Wolf, M., Budzier, H., Arndt, K.F., Gerlach, G.: Dielectrophoretic alignment of polymer compounds for thermal sensing. Sens. Actuators A 156(1), 164–170 (2009)Google Scholar
  33. 33.
    Ozturk, B., Flanders, B.N., Grischkowsky, D.R., Mishima, T.D.: Single-step growth and low resistance interconnecting of gold nanowires. Nanotechnology 18(17), 175707 (2007)Google Scholar
  34. 34.
    Papadakis, S.J., Gu, Z., Gracias, D.H.: Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays. Appl. Phys. Lett. 88(23), (2006)Google Scholar
  35. 35.
    Prasse, T., Cavaillé, J.Y., Bauhofer, W.: Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos. Sci. Technol. 63(13), 1835–1841 (2003)CrossRefGoogle Scholar
  36. 36.
    Prasse, T., Flandin, L., Schulte, K., Bauhofer, W.: In situ observation of electric field induced agglomeration of carbon black in epoxy resin. Appl. Phys. Lett. 72(22), 2903–2905 (1998)CrossRefGoogle Scholar
  37. 37.
    Roldughin, V.I., Vysotskii, V.V.: Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Prog. Org. Coat. 39, 81–100 (2000)CrossRefGoogle Scholar
  38. 38.
    Sakuma, H., Ishii, K.: Gas flow sputtering: versatile process for the growth of nanopillars, nanoparticles, and epitaxial thin films. J. Magn. Magn. Mater. 321(7), 872–875 (2009)CrossRefGoogle Scholar
  39. 39.
    Schürmann, U., Takele, H., Zaporojtchenko, V., Faupel, F.: Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering. Thin Solid Films 515(2), 801–804 (2006)CrossRefGoogle Scholar
  40. 40.
    Schwarz, F., Stritzker, B.: Plasma immersion ion implantation of polymers and silver-polymer nano composites. Surf. Coat. Technol. 204(12–13), 1875–1879 (2010)CrossRefGoogle Scholar
  41. 41.
    Schwarz, M.K., Bauhofer, W., Schulte, K.: Alternating electric field induced agglomeration of carbon black filled resins. Polymer 43(10), 3079–3082 (2002)CrossRefGoogle Scholar
  42. 42.
    Shea, H.R., Martel, R., Avouris, P.: Electrical transport in rings of single-wall nanotubes: one-dimensional localization. Phys. Rev. Lett. 84(19), 4441–4444 (2000)CrossRefGoogle Scholar
  43. 43.
    Shen, L., Lou, Z.D., Qian, Y.J.: Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. J. Polym. Sci., Part A: Polym. Chem. 45(22), 3078–3083 (2007)Google Scholar
  44. 44.
    Singh, K., Ohlan, A., Kotnala, R.K., Bakhshi, A.K., Dhawan, S.K.: Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with gamma-\({\rm Fe}_2{\rm O_3}\) nanoparticles. Mater. Chem. Phys. 112(2), 651–658 (2008)CrossRefGoogle Scholar
  45. 45.
    Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)CrossRefGoogle Scholar
  46. 46.
    Sumita, M., Sakata, K., Asai, S., Miyasaka, K., Nakagawa, H.: Dispersion of fillers and the electrical-conductivity of polymer blends filled with carbon-black. Polymer Bull. 25(2), 265–271 (1991)CrossRefGoogle Scholar
  47. 47.
    Tanase, M., Bauer, L.A., Hultgren, A., Silevitch, D.M., Sun, L., Reich, D.H., Searson, P.C., Meyer, G.J.: Magnetic alignment of fluorescent nanowires. Nano Lett. 1(3), 155–158 (2001)CrossRefGoogle Scholar
  48. 48.
    Vasquez, M., Cruz, G.J., Olayo, M.G., Timoshina, T., Morales, J., Olayo, R.: Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer 47(23), 7864–7870 (2006)CrossRefGoogle Scholar
  49. 49.
    Wang, L.H., Ding, T.H., Wang, P.: Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sens. J. 9(9), 1130–1135 (2009)CrossRefGoogle Scholar
  50. 50.
    Wang, M.W.: Alignment of multiwall carbon nanotubes in polymer composites by dielectrophoresis. Jpn. J. Appl. Phys. 48(3), 035002 (2009)Google Scholar
  51. 51.
    Xu, H.P., Dang, Z.M., Jiang, M.J., Yao, S.H., Bai, J.: Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. J. Mater. Chem. 18(2), 229–234 (2008)CrossRefGoogle Scholar
  52. 52.
    Xu, J.W., Wong, C.P.: Low-loss percolative dielectric composite. Appl. Phys. Lett. 87(8), 082907 (2005)Google Scholar
  53. 53.
    Yasuda, H.: Plasma Polymerization. Academic Press, Ohio (1985)Google Scholar
  54. 54.
    Zhang, D.H., Ryu, K., Liu, X.L., Polikarpov, E., Ly, J., Tompson, M.E., Zhou, C.W.: Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Solid-State Electronics LaboratoryTechnische Universität DresdenDresdenGermany

Personalised recommendations