Direct Nanoimprinting for Micro- and Nanosystems

  • Robert Kirchner
  • Jonathan Derix
  • Andreas Nocke
  • René Landgraf


This chapter focuses on direct-nanoimprinting as an innovative structuring technique for micro- and nano-opto-electro-mechanical systems (MOEMS/NOEMS). Direct-nanoimprinting is understood in this chapter as a structure replication process that uses nanoimprinting to create a functional device structure in a single step and that does not require further pattern transfer steps. The MOEMS and NOEMS discussed in this chapter comprise devices or systems being mainly in the micron resolution range but with nano-structures as key functional elements. Nanoimprinting allows the replication of these elements with a high resolution and high aspect ratios for a low to moderate price compared to other high-end lithography processes. Classical photolithography techniques might offer a similar or even higher resolution, however direct-patterning techniques as nanoimprinting allow the additional integration of three-dimensional (3D) structures in the same single pattern step. This would be much more challenging with classical photolithography techniques. As a main focus, this chapter discusses different approaches of nanoimprint molds.


High Aspect Ratio Surface Free Energy Adhesive Joint Residual Layer Hard Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahn, S.W., Lee, K.D., Kim, D.H., Lee, S.S.: Polymeric wavelength filter based on a bragg grating using nanoimprint technique. IEEE Photonic. Technol. Lett. 17(10), 2122–2124 (2005). doi: 10.1109/LPT.2005.854404 CrossRefGoogle Scholar
  2. 2.
    Anac, I., McCarthy, T.J.: Chemical modification of chromium oxide surfaces using organosilanes. J. Colloid Interface Sci. 331(1), 138–142 (2009). doi: 10.1016/j.jcis.2008.11.013 CrossRefGoogle Scholar
  3. 3.
    Bailey, T.C., Colburn, M., Choi, B.J., Grot, A., Ekerdt, J.G., Sreenivasan, S.V., Willson, C.G.: Step and flash imprint lithography, In: Alternative Lithography–Unleashing the Potentials of Nanotechnology, pp. 117–137. Plenum, New York (2003)Google Scholar
  4. 4.
    Balla, T., Spearing, S.M., Monk, A.: An assessment of the process capabilities of nanoimprint lithography. J. Phys. D Appl. Phys. 41(17), 174001 (10 pp) (2008). doi: 10.1088/0022-3727/41/17/174001 Google Scholar
  5. 5.
    Barbero, D.R., Saifullah, M.S.M., Hoffmann, P., Mathieu, H.J., Anderson, D., Jones, G.A.C., Welland, M.E., Steiner, U.: High resolution nanoimprinting with a robust and reusable polymer mold. Adv. Funct. Mater. 17, 2419–2425 (2007). doi:  10.1002/adfm.200600710 CrossRefGoogle Scholar
  6. 6.
    Bayiati, P., Tserepi, A., Gogolides, E., Misiakos, K.: Selective plasma-induced deposition of fluorocarbon films on metal surfaces for actuation in microfluidics. J. Vac. Sci. Technol. A 22(4), 1546–1551 (2004). doi: 10.1116/1.1764815 Google Scholar
  7. 7.
    Behl, M., Seekamp, J., Zankovych, S., Torres, C.M.S., Zentel, R., Ahopelto, J.: Towards plastic electronics: Patterning semiconducting polymers by nanoimprint lithography. Adv. Mater. 148, 588 (2002). doi:  10.1002/1521-4095(20020418)<588::AID-ADMA588>3.0.CO;2-KCrossRefGoogle Scholar
  8. 8.
    Bhushan, B. (ed.): Springer Handbook of Nanotechnology. Springer, New York (2007)Google Scholar
  9. 9.
    Cao, H., Yu, Z., Wang, J., Tegenfeldt, J.O., Austin, R.H., Chen, E., Wu, W., Chou, S.Y.: Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81(1), 174–176 (2002). 10.1063/1.1489102Google Scholar
  10. 10.
    Cattoni, A., Cambril, E., Decanini, D., Faini, G., Haghiri-Gosnet, A.: Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold. Microelecton. Eng. 86, 586–589 (2009)CrossRefGoogle Scholar
  11. 11.
    Chan-Park, M.B., Yan, Y., Neo, W.K., Zhou, W., Zhang, J., Yue, C.Y.: Fabrication of high aspect ratio poly(ethylene glycol)—containing microstructures by UV embossing. Langmuir 19, 4371–4380 (2003)CrossRefGoogle Scholar
  12. 12.
    Chang, C., Yang, S., Chu, M.: Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process. Microelectron. Eng. 84(2), 355–361 (2007).  doi:10.1016/j.mee.2006.11.004 CrossRefGoogle Scholar
  13. 13.
    Chao, C.Y., Fung, W., Guo, L.J.: Polymer microring resonators for biochemical sensing applications. IEEE J. Quantum Electron. 12, 134–142 (2006). 10.1109/JSTQE.2005.862945Google Scholar
  14. 14.
    Chao, C.Y., Guo, L.J.: Polymer microring resonators fabricated by nanoimprint technique. J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002). 10.1116/1.1521729Google Scholar
  15. 15.
    Chao, C.Y., Guo, L.J.: Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83(8), 1527–1529 (2003). 10.1063/1.1605261Google Scholar
  16. 16.
    Chen, Y., Carcenac, F., Ecoffet, C., Lougnot, D.J., Launois, H.: Mold-assisted near-field optical lithography. Microelectron. Eng. 46, 69–72 (1999). 10.1016/S0167-9317(99)00017-9Google Scholar
  17. 17.
    Cheng, X., Guo, L.J.: A combined-nanoimprint-and-photolithography patterning technique. Microelectron. Eng. 71(3–4), 277–282 (2004). doi: 10.1016/j.mee.2004.01.041 CrossRefGoogle Scholar
  18. 18.
    Cheng, X., Guo, L.J.: One-step lithography for various size patterns with a hybrid mask-mold. Microelectron. Eng. 71(3–4), 288–293 (2004). doi: 10.1016/j.mee.2004.01.042 CrossRefGoogle Scholar
  19. 19.
    Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), 3114–3116 (1995). 10.1063/1.114851Google Scholar
  20. 20.
    Cygan, Z.T., Cabral, J.T., Beers, K.L., Amis, E.J.: Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21(8), 3629–3634 (2005)CrossRefGoogle Scholar
  21. 21.
    Fader, R., Schmitt, H., Rommel, M., Bauer, A.J., Frey, L., Ji, R., Hornung, M., Brehm, M., Kraft, A., Vogler, M.: Novel polymers for UV-enhanced substrate conformal imprint lithography. In: Proceedings of the 37th International Conference on Micro and Nano Engineering (2011)Google Scholar
  22. 22.
    Finder, C., Beck, M., Seekamp, J., Pfeiffer, K., Carlberg, P., Maximov, I., Reuther, F., Sarwe, E.L., Zankovich, S., Ahopelto, J., Montelius, L., Mayer, C., Torres, C.M.S.: Fluorescence microscopy for quality control in nanoimprint lithography. Microelectron. Eng. 6768, 623–628 (2003)Google Scholar
  23. 23.
    Garidel, S., Zelsmann, M., Chaix, N., Voisin, P., Boussey, J., Beaurain, A., Pelissier, B.: Improved release strategy for UV nanoimprint lithography. J. Vac. Sci. Technol. B 25(6), 2430–2434 (2007). 10.1116/1.2806969Google Scholar
  24. 24.
    Gilles, S., Meier, M., Proempers, M., van der Hart, A., Kuegeler, C., Offenhaeusser, A., Mayer, D.: UV nanoimprint lithography with rigid polymer molds. Microelectron. Eng. 86, 661–664 (2009)CrossRefGoogle Scholar
  25. 25.
    Guo, L.J.: Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 37(11), R123–R141 (2004). Google Scholar
  26. 26.
    Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRefGoogle Scholar
  27. 27.
    Guo, L.J., Cheng, X., Chao, C.Y.: Fabrication of photonic nanostructures in nonlinear optical polymers. J. Mod. Optic. 49(3), 663–673 (2002)CrossRefGoogle Scholar
  28. 28.
    Guo, L.J., Cheng, X., Chou, C.F.: Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4(1), 69–73 (2004). doi: 10.1021/nl034877i CrossRefGoogle Scholar
  29. 29.
    Hirai, Y., Kikuta, H., Sanou, T.: Study on optical intensity distribution in photocuring nanoimprint lithography. J. Vac. Sci. Technol. B 21(6), 2777–2782 (2003). 10.1116/1.1629717Google Scholar
  30. 30.
    Hoffmann, T.: Viscoelastic properties of polymers. In: Alternative Lithography–Unleashing the Potentials of Nanotechnology, pp. 25–45. Plenum, New York (2003)Google Scholar
  31. 31.
    ITRS: Lithography. In: International Technology Roadmap for Semiconductors (2007 Edition) (2008)Google Scholar
  32. 32.
    ITRS: Lithography. In: International Technology Roadmap for Semiconductors (2009 Edition) (2009)Google Scholar
  33. 33.
    Ji, R., Hornung, M., Verschuuren, M., van de Laar, R., van Eekelen, J., Plachetka, U., Moeller, M., Moormann, C.: UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 87(5–8), 963–967 (2009). doi: 10.1016/j.mee.2009.11.134 Google Scholar
  34. 34.
    Kehagias, N., Reboud, V., Girolamo, J.D., Chouiki, M., Zelsmann, M., Boussey, J., Torres, C.S.: Stamp replication for thermal and UV nanoimprint lithography using a UV-sensitive silsesquioxane resist. Microelectron. Eng. 86, 776–778 (2009)CrossRefGoogle Scholar
  35. 35.
    Kettle, J., Coppo, P., Lalev, G., Tattershall, C., Dimov, S., Turner, M.: Development and validation of functional imprint material for the step and flash imprint lithography process. Microelectron. Eng. 85(5–6), 850–852 (2008). doi: 10.1016/j.mee.2007.12.070 CrossRefGoogle Scholar
  36. 36.
    Khang, D.Y., Kang, H., Kim, T.I., Lee, H.H.: Low-pressure nanoimprint lithography. Nano Lett. 4(4), 633–637 (2004). doi: 10.1021/nl049887d CrossRefGoogle Scholar
  37. 37.
    Khang, D.Y., Lee, H.H.: Sub-100 nm patterning with an amorphous fluoropolymer mold. Langmuir 20(6), 2445–2448 (2004). doi: 10.1021/la0358668 CrossRefGoogle Scholar
  38. 38.
    Kirchner, R.: Nanoimprint technology - basics and applications. In: Presented at Summer School Microelectronics (Abu Dhabi - Dresden) (2010)Google Scholar
  39. 39.
    Kirchner, R.: On uv-nanoimprint-lithography as direct patterning tool for polymeric microsystems. Ph.D. Thesis, Technische Universität Dresden (2011).Google Scholar
  40. 40.
    Kirchner, R., Adolphi, B., Richter, K., Fischer, W.J.: Reduced PDMS swelling in toluene and acrylates by \({\rm C}_4{\rm F}_8\) plasma fluorination. In: Max Bergmann Symposium, Dresden (2008). (as supplemental sheet)Google Scholar
  41. 41.
    Kirchner, R., Landgraf, R., Bertram, M., Fischer, W.J.: Direct UV-nanoimprint of polymer microring resonators as optical transducers. In: Proceedings of the 2nd Workshop Mikro-Nano-Integration, pp. 153–158, (in English) VDE Verlag GmbH (2010). ISBN: 978-3-8007-3216-6 Google Scholar
  42. 42.
    Kirchner, R., Ploetner, M., Fischer, W.J.: Imprinttemplate, Nanoimprintvorrichtung und Nanostrukturierungsverfahren. Patent DE 10.2010.043.059 A1 (2010)Google Scholar
  43. 43.
    Kirchner, R., Teng, L., Fischer, W.J.: Multi-usable, adhesively bonded UV-NIL templates. In: Proceedings of the 8th International Conference on Nanoimprint and Nanoprint Technology, pp. 52 (2009)Google Scholar
  44. 44.
    Kirchner, R., Teng, L., Lu, B., Adolphi, B., Fischer, W.J.: Degradation of perfluorotrichlorosilane antisticking layers: The impact on mold cleaning, UV-nanoimprinting, and bonded UV-nanoimprint molds. Jpn. J. Appl. Phys. 50, 06GK13 (8pp) (2011). 10.1143/JJAP.50.06GK13Google Scholar
  45. 45.
    Lee, J., Ali, A., don Kim, K., Kim, J.H., guen Choi, D., Choi, J.H., ho Jeong, J.: Plasma-assisted quartz-to-quartz direct bonding for the fabrication of a multilayered quartz template for nanoimprint lithography. J. Micromech. Microeng. 20(4), 045005 (2010). 10.1088/0960-1317/20/4/045005Google Scholar
  46. 46.
    Lee, J.N., Park, C., Whitesides, G.M.: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003)CrossRefGoogle Scholar
  47. 47.
    Lee, T.Y., Guymonc, C.A., Jönsson, E.S., Hoyle, C.E.: The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer 45, 6155–6162 (2004)CrossRefGoogle Scholar
  48. 48.
    Li, H.W., Huck, W.T.S.: Ordered block-copolymer assembly using nanoimprint lithography. Nano Lett. 4, 1633–1636 (2004)CrossRefGoogle Scholar
  49. 49.
    Long, B.K., Keitz, B.K., Willson, C.G.: Materials for step and flash imprint lithography (S-FIL). J. Mater. Chem. 17, 3575–3580 (2007). 10.1039/b705388fGoogle Scholar
  50. 50.
    Maekelae, T., Haatainen, T., Ahopelto, J., Isotalo, H.: Imprinted electrically conductive patterns from a polyaniline blend. J. Vac. Sci. Technol. B 19, 478 (2001). 10.1116/1.1354979Google Scholar
  51. 51.
    Maltabes, J.G., Mackay, R.S.: Current overview of commercially available imprint templates and directions for future development. Microelectron. Eng. 83, 933–935 (2006)CrossRefGoogle Scholar
  52. 52.
    Melin, J., Hedsten, K., Magnusson, A., Karlén, D., Rödjegård, H., Persson, K., Bengtsson, J., Enoksson, P., Nikolajeff, F.: Microreplication in a silicon processing compatible polymer material. J. Micromech. Microeng. 15, S116–S121 (2005). doi:10.1088/0960-1317/15/7/017Google Scholar
  53. 53.
    Mills, C.A., Martinez, E., Bessueille, F., Villanueva, G., Bausells, J., Samitier, J., Errachid, A.: Production of structures for microfluidics using polymer imprint techniques. Microelectron. Eng. 78–79, 695–700 (2005). 10.1016/j.mee.2004.12.087Google Scholar
  54. 54.
    Moser, D., Heinrich, M., Schuster, C., Klukowska, A., Schmidt, A.: Development and characterization of a Process for Microlense Fabrication by Lithography. In: MikroSystemTechnik Kongress, RIE and UV molding. (2009)Google Scholar
  55. 55.
    Muehlberger, M., Bergmair, I., Klukowska, A., Kolander, A., Leichtfried, H., Platzgummer, E., Loeschner, H., Ebm, C., Gruetzner, G., Schoeftner, R.: UV-NIL with working stamps made from Ormostamp. Microelectron. Eng. 86, 691–693 (2009)CrossRefGoogle Scholar
  56. 56.
    Odom, T., Love, J., Wolfe, D., Paul, K., Whitesides, G.: Improved pattern transfer in soft lithography using composite stamps. Langmuir 18(13), 5314–5320 (2002)CrossRefGoogle Scholar
  57. 57.
    Ofir, Y., Moran, I.W., Subramani, C., Carter, K.R., Rotello, V.M.: Nanoimprint lithography for functional three-dimensional patterns. Adv. Mater. 22, 3608–3614 (2010)CrossRefGoogle Scholar
  58. 58.
    Pisignano, D., Persano, L., Raganato, M., Visconti, P., Cingolani, R., Barbarella, G., Favaretto, L., Gigl, G.: Room-temperature nanoimprint lithography of non-thermoplastic organic films. Adv. Mater. 16(6), 525–529 (2004)CrossRefGoogle Scholar
  59. 59.
    Plssl, A., Kräuter, G.: Wafer direct bonding: tailoring adhesion between brittle materials. Mater. Sci. Eng. R 25(1–2), 1–88 (1999). 10.1016/S0927-796X(98)00017-5Google Scholar
  60. 60.
    Plueddemann, E.P.: Adhesion through silane coupling agents. J. Adhesion 2, 184–201 (1970). 10.1080/0021846708544592Google Scholar
  61. 61.
    Pocius, A.V.: Adhesion and Adhesives Technology—An Introduction, 2nd edn. Hanser, München (2002)Google Scholar
  62. 62.
    Pépin, A., Youinou, P., Studer, V., Lebib, A., Chen, Y.: Nanoimprint lithography for the fabrication of DNA electrophoresis chips. Microelectron. Eng. 61–62, 927–932 (2002). 10.1016/S0167-9317(02)00511-7Google Scholar
  63. 63.
    Quist, A., Pavlovic, E., Oscarsson, S.: Recent advances in microcontact printing. Anal. Bioanal. Chem. 381(3), 591–600 (2005)CrossRefGoogle Scholar
  64. 64.
    Reiter, G., Sharma, A., Casoli, A., David, M., Khanna, R., Auroys, P.: Thin film instability induced by long-range forces. Langmuir 15(7), 2551–2558 (1999)CrossRefGoogle Scholar
  65. 65.
    Resnick, D.J., Schmid, G., Miller, M., Doyle, G., Jones, C., LaBrake, D.: Step and flash imprint lithography template fabrication for emerging market applications. Proc. SPIE 6607, 66070T (2007). 10.1117/12.728943Google Scholar
  66. 66.
    Rogers, J.A., Nuzzo, R.G.: Recent progress in soft lithography. Mater. Today 8(2), 50–56 (2005)CrossRefGoogle Scholar
  67. 67.
    Rolland, J.P., Dam, R.M.V., Schorzman, D.A., Quake, S.R., DeSimone, J.M.: Solvent-resistant photocurable“liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004)CrossRefGoogle Scholar
  68. 68.
    Rolland, J.P., Hagberg, E.C., Denison, G.M., Carter, K.R., De Simone, J.M.: High-resolution soft lithography: enabling materials for nanotechnologies. Angew. Chem. Int. Ed. 43(43), 5796 (2004)Google Scholar
  69. 69.
    Ruchhoeft, P., Colburn, M., Choi, B., Nounu, H., Johnson, S., Bailey, T., Damle, S., Stewart, M., Ekerdt, J., Sreenivasan, S.V., et al.: Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography. J. Vac. Sci. Technol. B 17, 2965 (1999)Google Scholar
  70. 70.
    Scheer, H.C., Hirai, Y., Bogdanski, N., Nishihata, M.: Polymer elasticity effects during thermal nanoimprint. Der Andere Verlag (2008)Google Scholar
  71. 71.
    Scheer, H.C., Schulz, H.: A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron. Eng. 56, 311–332 (2001)CrossRefGoogle Scholar
  72. 72.
    Scheer, H.C., Schulz, H., Hoffmann, T., Sotomayor-Torres, C.M.: Nanoimprint techniques. In: Nalwa, H.S. (ed.) Handbook of Thin Film Materials, p. 49. Academic Press, New York (2002)Google Scholar
  73. 73.
    Scheer, H.C., Wissen, M., Bogdanski, N., Möllenbeck, S., Mayer, A.: Potential and limitations of a T-NIL/UVL hybrid process. Microelecton. Eng. 87, 851–853 (2010)Google Scholar
  74. 74.
    Schift, H.: Nanoimprint lithography: an old story in modern times? A review. J. Vac. Sci. Technol. B 26(2), 458–480 (2008)CrossRefGoogle Scholar
  75. 75.
    Schift, H., Heydermann, L.J.: Alternative Lithography—Unleashing the Potentials of Nanotechnology, Chap. 4, pp. 47–76. Plenum, New York (2003)Google Scholar
  76. 76.
    Schleunitz, A., Schift, H.: Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow. J. Micromech. Microeng. 20, 095002 (2010)Google Scholar
  77. 77.
    Schmitt, H.: Untersuchung der UV-Nanoimprint-Lithografie als Strukturierungsverfahren für elektronische Bauelemente. Ph.D. Thesis, Universität Erlangen-Nürnberg (2008). (in German)Google Scholar
  78. 78.
    Schmitt, H., Duempelmann, P., Fader, R., Rommel, M., Bauer, A.J., Frey, L., adn A. Kraft, M.B.: Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. In: Proceedings of the 37th International Conference on Micro and Nano Engineering, pp. 61–62 (2011)Google Scholar
  79. 79.
    Schmitt, H., Rommel, M., Bauer, A.J., Frey, L., Bich, A., Eisner, M., Voelkel, R., Hornung, M.: Full wafer microlens replication by UV imprint lithography. Microelectron. Eng. 87(5–8), 1074–1076 (2010)CrossRefGoogle Scholar
  80. 80.
    Schmitt, H., Zeidler, M., Rommel, M., Bauer, A.J., Ryssel, H.: Custom-specific UV nanoimprint templates and life-time of antisticking layers. Microelectron. Eng. 85(5–6), 897–901 (2008)CrossRefGoogle Scholar
  81. 81.
    Seekamp, J., Zankovych, S., Helfer, A.H., Maury, P., Torres, C.M.S., Bottger, G., Liguda, C., Eich, M., Heidari, B., Montelius, L., Ahopelto, J.: Nanoimprinted passive optical devices. Nanotechnology 13(5), 581–586 (2002). doi: 10.1088/0957-4484/13/5/307 CrossRefGoogle Scholar
  82. 82.
    Shafrin, E.G., Zisman, W.A.: Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64(5), 519–524 (1960). doi: 10.1021/j100834a002 CrossRefGoogle Scholar
  83. 83.
    Stewart, M.D., Wetzel, J.T., Schmid, G.M., Palmieri, F., Thompson, E., Kim, E.K., Wang, D., Sotoodeh, K., Jen, K., Johnson, S.C., Hao, J., Dickey, M.D., Nishimura, Y., Laine, R.M., Resnick, D.J., Willson, C.G.: Direct imprinting of dielectric materials for dual damascene processing. Proc. SPIEInt. Soc. Opt. Eng. 5751, 210 (2005)Google Scholar
  84. 84.
    Suh, D., Choi, S., Lee, H.: Rigiflex lithography for nanostructure transfer. Adv. Mater. 17(12), 1554–1560 (2005)CrossRefGoogle Scholar
  85. 85.
    Takahashi, K., Itoh, A., Nakamura, T., Tachibana, K.: Radical kinetics for polymer film deposition in fluorocarbon (\({\rm C}_4{\rm F}-8\), \({\rm C}_3{\rm F}_6\) and \({\rm C}_5{\rm F}_8\)) plasmas. Thin Solid Films 374(2), 303–310 (2000)CrossRefGoogle Scholar
  86. 86.
    Teng, L., Kirchner, R., Ploetner, M., Jahn, A., He, J., Hagemann, F., Fischer, W.J.: Fabrication of sub-500 nm source and drain electrodes for organic field effect transistors using UV nanoimprint lithography with low-cost silicon mold and lift-off process. In: 3rd GMM Workshop Mikro-Nano-Integration, vol. GMM Fachbericht 68, pp. 84–89, (in English) VDE Verlag GmbH (2011). ISBN 978-3-8007-3334-7 Google Scholar
  87. 87.
    Tormen, M., Businaro, L., Altissimo, M., Romanato, F., Cabrini, S., Perennes, F., Proietti, R., Sun, H.B., Kawata, S., Di Fabrizio, E.: 3d patterning by means of nanoimprinting, x-ray and two-photon lithography. Microelectron. Eng. 73–74(1), 535–541 (2004). doi: 10.1016/j.mee.2004.02.81 CrossRefGoogle Scholar
  88. 88.
    Torres, C.M.S. (ed.): Alternative Lithography - Unleashing the Potentials of Nanotechnology. Plenum, New York (2003)Google Scholar
  89. 89.
    Truffier-Boutry, D., Zelsmann, M., Girolamo, J.D., Boussey, J., Lombard, C., Pépin-Donat, B.: Chemical degradation of fluorinated antisticking treatments in UV nanoimprint lithography. Appl. Phys. Lett. 94(4), 044110 (2009). 10.1063/1.3077172.Google Scholar
  90. 90.
    Tserepi, A.D., Vlachopoulou, M.E., Gogolides, E.: Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 17, 3977–3983 (2006). 10.1088/0957-4484/17/15/062Google Scholar
  91. 91.
    Tsunozaki, K., Kawaguchi, Y.: Preparation methods and characteristics of fluorinated polymers for mold replication. Microelectron. Eng. 86, 694–696 (2009)CrossRefGoogle Scholar
  92. 92.
    Verschuuren, M.A.: Substrate conformal imprint lithography for nanophotonics. Ph.D. Thesis, Utrecht University (2010)Google Scholar
  93. 93.
    Wang, J., Sun, X., Chen, L., Chou, S.Y.: Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75(18), 2767–2769 (1999). 10.1063/1.125143Google Scholar
  94. 94.
    Wiles, K., Wiles, N., Herlihy, K., Maynor, B., Rolland, J., DeSimone, J.: Soft lithography using perfluorinated polyether molds and PRINT technology for fabrication of 3D arrays on glass substrates. In: Proceedings of the SPIE International Society for Optical Engineering 1999, vol. 6151, p. 61513 (2006)Google Scholar
  95. 95.
    Wissen, M., Schulz, H., Bogdanski, N., Scheer, H.C., Hirai, Y., Kikuta, H., Ahrens, G., Reuther, F., Pfeiffer, K.: UV curing of resists for warm embossing. Microelecton. Eng. 73–74, 184–189 (2004)CrossRefGoogle Scholar
  96. 96.
    Witucki, G.L.: A silane primer: chemistry and applications of aikoxy silanes. J. Coat. Technol. 65(822), 57–60 (1993)Google Scholar
  97. 97.
    Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar
  98. 98.
    Zhao, Y., Cui, T.: Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique. J. Micromech. Microeng. 13(3), 430–435 (2003). doi: 10.1088/0960-1317/13/3/312 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Kirchner
    • 1
  • Jonathan Derix
    • 2
  • Andreas Nocke
    • 2
  • René Landgraf
    • 1
  1. 1.Institute of Semiconductor and Microsystems TechnologyTechnische Universität DresdenDresdenGermany
  2. 2.Solid-States Electronics LaboratoryTechnische Universität DresdenDresdenGermany

Personalised recommendations