On the Kneser’s Property for the Complex Ginzburg–Landau Equation and the Lotka–Volterra System with Diffusion

  • Mikhail Z. Zgurovsky
  • Pavlo O. Kasyanov
  • Oleksiy V. Kapustyan
  • José Valero
  • Nina V. Zadoianchuk
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 27)

Abstract

As we have seen in the previous chapters when we consider the Cauchy problem of a differential equation and uniqueness fails to hold (or it is not known to hold), then we have to consider a set of solutions corresponding to a given initial data.

Keywords

Weak Solution Cauchy Problem Smooth Boundary Global Attractor Landau Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ball JM (2004) Global attractors for damped semilinear wave equations. Discrete Contin Dyn Syst 10:31–52Google Scholar
  2. 2.
    Barbu V (1976) Nonlinear semigroups and differential equations in banach spaces. Editura Academiei, BucurestiGoogle Scholar
  3. 3.
    Caraballo T, Langa JA, Melnik VS, Valero J (2003) Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. doi:10.1023/A:1022902802385Google Scholar
  4. 4.
    Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. American Mathematical Society, Providence RIGoogle Scholar
  5. 5.
    Chipot M (2000) Elements of nonlinear analysis. Birkhäuser, BaselGoogle Scholar
  6. 6.
    Gajewsky H, Gröger K, Zacharias K (1974) Nichlineare operatorgleichungen und operatordifferentialgleichungen. Akademie, BerlinGoogle Scholar
  7. 7.
    Gobbino M, Sardella A (1996) On the connectedness of attractors for dynamical systems. J Differ Equat. doi:10.1006/jdeq.1996.3166Google Scholar
  8. 8.
    Hartman Ph (2002) Ordinary differential equations. SIAM’s Classics in Applied Mathematics, SIAM, Philadelphia, PAGoogle Scholar
  9. 9.
    Henríquez HR (2003) The Kneser property for abstract retarded functional differential equations with infinite delay. Int J Math Math Sci 26:1645–1661Google Scholar
  10. 10.
    Kaminogo T (1978) Kneser’s property and boundary value problems for some retarded functional differential equations. Tohoku Math J 30:471–486Google Scholar
  11. 11.
    Kaminogo T (2001) Kneser families in infinite-dimensional spaces. Nonlinear Anal. doi:10.1016/S0362-546X(99)00414-9Google Scholar
  12. 12.
    Kapustyan AV, Melnik VS, Valero J, Yasinsky VV (2008) Global attractors of multi-valued evolution equations without uniqueness. Naukova Dumka, KievGoogle Scholar
  13. 13.
    Kapustyan AV, Valero J (2006) On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J Math Anal Appl. doi:10.1016/j.jmaa.2005.10.042Google Scholar
  14. 14.
    Kapustyan AV, Valero J (2009) On the Kneser property for the complex Ginzburg-Landau equation and the Lotka–Volterra system with diffusion. J Math Anal Appl 357:254–272Google Scholar
  15. 15.
    Kikuchi N (1993) Kneser’s propery for a parabolic partial differential equation. Nonlinear Anal. doi:10.1016/0362-546X(93)90158-OGoogle Scholar
  16. 16.
    Kloeden PE, Valero J (2007) The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations. Proc R Soc A 463:1491–1508Google Scholar
  17. 17.
    Kloeden PE, Valero J (2010) The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete Contin Dyn Syst 28:161–179Google Scholar
  18. 18.
    Lions JL (1969) Quelques Méthodes de Résolution des Problèmes aux Limites non Linéares. Dunod, Gauthier VillarsGoogle Scholar
  19. 19.
    Marion M (1987) Attractors for reaction-diffusion equations: existence and estimate of their dimension. Appl Anal 25:101–147Google Scholar
  20. 20.
    Mielke A (1997) The complex Ginzburg-Landau equation on large and unbounded domains. Nonlinearity. doi:10.1088/0951-7715/10/1/014Google Scholar
  21. 21.
    Morillas F, Valero J (2005) Attractors for reaction-diffusion equations in R N with continuous nonlinearity. Asympt Anal 44:111–130Google Scholar
  22. 22.
    Morillas F, Valero J (2009) On the Kneser property for reaction-diffusion systems on unbounded domains. Topol Appl 156:3029–3040Google Scholar
  23. 23.
    Okazawa N, Yokota T (2002) Monotonicity method applied to the complex Ginzburg-Landau and related equations. J Math Anal Appl doi:10.1006/jmaa.2001.7770Google Scholar
  24. 24.
    Okazawa N, Yokota T (2002) Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-laplacian. J Differ Equat. doi:10.1006/jdeq.2001.4097Google Scholar
  25. 25.
    Papageorgiuou NS, Papalini F (1996) On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Acta Math Univ Comenianae 65:33–51Google Scholar
  26. 26.
    Smoller J (1983) Shock waves and reaction-diffusion equations. Springer, New YorkGoogle Scholar
  27. 27.
    Szufla S (1999) Kneser’s theorem for weak solutions of an mth-order ordinary differential equation in Banach spaces. Nonlinear Anal 38:785–791Google Scholar
  28. 28.
    Takeuchi S, Asakawa H, Yokota T (2004) Complex Ginzburg-Landau type equations with nonlinear Laplacian, in the Proceedings of the international conference Nonlinear Partial Differential Equations and Their Applications (Shangai, 2003), GAKUTO Int Ser Math Appl 20:315–332Google Scholar
  29. 29.
    Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New YorkGoogle Scholar
  30. 30.
    Temam R (1979) Navier-Stokes equations. North-Holland, AmsterdamGoogle Scholar
  31. 31.
    Tolstonogov AA, Umansky YI (1992) On solutions of evolution inclusions. 2. Sibirsk Mat Zh. 33:163–173Google Scholar
  32. 32.
    Valero J (2005) On the kneser property for some parabolic problems. Topology Appl 153:975–989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail Z. Zgurovsky
    • 1
  • Pavlo O. Kasyanov
    • 2
  • Oleksiy V. Kapustyan
    • 2
  • José Valero
    • 3
  • Nina V. Zadoianchuk
    • 2
  1. 1.Institute for Applied System AnalysisNational Academy of Science National Technical University of UkraineKyivUkraine
  2. 2.Kyiv Polytechnic Institute Institute for Applied System AnalysisNational Technical University of UkraineKyivUkraine
  3. 3.Centro de Investigación OperativaUniv. Miguel Hernández de ElcheAlicanteSpain

Personalised recommendations