On Global Attractors of Multivalued Semiprocesses and Nonautonomous Evolution Inclusions

  • Mikhail Z. Zgurovsky
  • Pavlo O. Kasyanov
  • Oleksiy V. Kapustyan
  • José Valero
  • Nina V. Zadoianchuk
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 27)


In the first chapter, we considered the existence and properties of global attractors for autonomous multivalued dynamical systems. When the equation is nonautonomous, new and challenging difficulties appear. In this case, if uniqueness of the Cauchy problem holds, then the usual semigroup of operators becomes a two-parameter semigroup or process [38, 39], as we have to take into account the initial and the final time of the solutions.


Global Attractor Evolution Inclusion Pullback Attractor Convex Lower Semicontinuous Function Proper Convex Lower Semicontinuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aubin JP, Cellina A (1984) Differential inclusions. Springer, BerlinGoogle Scholar
  2. 2.
    Aubin JP, Frankowska H (1990) Set-valued analysis. Birkhäuser, BostonGoogle Scholar
  3. 3.
    Babin AV (1995) Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain. Russian Acad Sci Izv Math. doi:10.1070/IM1995v044n02ABEH001594Google Scholar
  4. 4.
    Ball JM (1997) Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. J Nonlinear Sci. doi:10.1007/s003329900037Google Scholar
  5. 5.
    Barbu V (1976) Nonlinear semigroups and differential equations in banach spaces. Editura Academiei, BucurestiGoogle Scholar
  6. 6.
    Caraballo T, Langa JA, Melnik VS, Valero J (2003) Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal 11:153–201Google Scholar
  7. 7.
    Caraballo T, Langa JA, Valero J (2002) Global attractors for multivalued random dynamical systems. Nonlinear Anal. doi:10.1016/S0362-546X(00)00216-9Google Scholar
  8. 8.
    Caraballo T, Lukaszewicz G, Real J (2006) Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal 64:484–498Google Scholar
  9. 9.
    Chepyzhov VV, Efendiev MA (2000) Hausdorff dimension estimation for attractors of nonautonomous dynamical systems in unbounded domains: an example. Comm Pure Appl Math 53:647–665Google Scholar
  10. 10.
    Chepyzhov VV, Vishik MI (1994) Attractors of nonautonomous dynamical systems and their dimension. J Math Pures Appl 73:279–333Google Scholar
  11. 11.
    Chepyzhov VV, Vishik MI (1997) Evolution equations and their trajectory attractors. J Math Pures Appl. doi:10.1016/S0021-7824(97)89978-3Google Scholar
  12. 12.
    Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. American Mathematical Society, Providence, RIGoogle Scholar
  13. 13.
    Crauel H, Flandoli F (1994) Attractors for random dynamical systems. Probab Theor Relat Field 100:365–393Google Scholar
  14. 14.
    Gutman S (1987) Existence theorems for nonlinear evolution equations. Nonlinear Anal. doi:10.1016/0362-546X(87)90007-1Google Scholar
  15. 15.
    Hale JK (1988) Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs 25, AMS, Providence RIGoogle Scholar
  16. 16.
    Hou Y, Li K (2004) The uniform attractor for the 2D non-autonomous Navier–Stokes flow in some unbounded domain. Nonlinear Anal 58:609–630Google Scholar
  17. 17.
    Kapustyan AV, Melnik VS (1998) Global attractors of multivalued semidynamical systems and their approximations. Cybern Syst Anal. doi:10.1007/BF02667045Google Scholar
  18. 18.
    Kapustian AV, Melnik VS (1998) Attractors of multivalued semidynamical systems and their approximations. Dokl Akad Nauk Ukraini 10:21–25Google Scholar
  19. 19.
    Kapustyan AV, Melnik VS (1999) On approximations and dimension estimates of global attractors of multivalued semiflows. Naukovy Visty KPI 2:126–131Google Scholar
  20. 20.
    Kapustyan OV, Melnik VS, Valero J (2003) Attractors of multivalued dynamical processes generated by phase-field equations. Int J Bifur Chaos 13:1969–1983Google Scholar
  21. 21.
    Kapustyan AV, Valero J (2000) Attractors of multivalued semiflows generated by differential inclusions and their approximations. Abstr Appl Anal 5:33–46Google Scholar
  22. 22.
    Kapustyan OV, Valero J (2006) On the connectedness and asymptotic behavior of solutions of reaction-diffusion systems. J Math Anal Appl. doi:10.1016/j.jmaa.2005.10.042Google Scholar
  23. 23.
    Kapustyan OV, Valero J (2007) Weak and strong attractors for 3D Navier–Stokes system. J Differ Equat. doi:10.1016/j.jde.2007.06.008Google Scholar
  24. 24.
    Kapustyan OV, Valero J (2009) On the Kneser property for the Ginzburg-Landau equation and the Lotka-Volterra system with diffusion. J Math Anal Appl 357:254–27Google Scholar
  25. 25.
    Kloeden PE (2003) Pullback attractors of nonautonomous semidynamical systems. Stoch Dyn 3:101–112Google Scholar
  26. 26.
    Ladyzhenskaya OA (1991) Attractors for semigroups and evolution equations. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Melnik VS (1994) Multivalued dynamics of nonlinear infinite-dimensional systems. Prepint No. 94–17, Acad Sci Ukraine, Institute of CyberneticsGoogle Scholar
  28. 28.
    Melnik VS (1995) Multivalued semiflows and their attractors. Dokl Akad Nauk 343:302–305Google Scholar
  29. 29.
    Melnik VS (1997) Families of m-semiflows and their attractors. Dokl Akad Nauk 353:158–162Google Scholar
  30. 30.
    Melnik VS, Slastikov VV, Vasilkevich SI (1999) On global attractors of multivalued semi-processes. Dokl Akad Nauk Ukraini 7:12–17Google Scholar
  31. 31.
    Melnik VS, Slastikov VV, Vasilkevich SI (1999) Multivalued semiprocesses in infinite-dimensional spaces and their attractors, Reports NAS of Ukraine, no.7 pp 12–17Google Scholar
  32. 32.
    Melnik VS, Valero J (1997) On attractors of multivalued semidynamical systems in infinite-dimensional spaces. Preprint No. 5, Departamento de Matemáticas, Universidad de MurciaGoogle Scholar
  33. 33.
    Melnik VS, Valero J (1998) On attractors of multivalued semi-flows and differential inclusions. Set-Valued Anal. doi:10.1023/A:1008608431399Google Scholar
  34. 34.
    Melnik VS, Valero J (2000) On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions. Set-Valued Anal 8:375–403Google Scholar
  35. 35.
    Moise I, Rosa R, Wang X (2004) Attractors for noncompact nonautonomous systems via energy equations. Discrete Contin Dyn Syst 10:473–496Google Scholar
  36. 36.
    Papageorgiou NS (1997) Evolution inclusions involving a difference term of subdifferentials and applications. Indian J Pure Appl Math 28:575–610Google Scholar
  37. 37.
    Schmalfuss B (2000) Attractors for the non-autonomous dynamical systems. In: Fiedler B, Gröger K, Sprekels J (ed) In Proceedings of Equadiff99, Berlin, World Scientific, Singapore, pp 684–689Google Scholar
  38. 38.
    Sell GR (1967) Nonautonomous differential equations and topological dynamics. I. The basic theory. Trans Amer Math Soc 127:241–262Google Scholar
  39. 39.
    Sell GR (1967) Nonautonomous differential equations and topological dynamics. II. The basic theory. Trans Amer Math Soc 127:263–283Google Scholar
  40. 40.
    Tolstonogov AA (1992) On solutions of evolution inclusions.I. Siberian Math J. doi: 10.1007/BF00970899Google Scholar
  41. 41.
    Valero J (1997) Existence and dimension of attractors in dynamical systems generated by evolution inclusions. Ph D Thesis, Universidad de MurciaGoogle Scholar
  42. 42.
    Valero J (1999) Attractors of parabolic equations without uniqueness. Preprint No. 15, Departamento de Matemáticas, Universidad de MurciaGoogle Scholar
  43. 43.
    Valero J (2000) Finite and infinite-dimensional attractors for multivalued reaction-diffusion equations. Acta Math Hungar. doi:10.1023/A:1006769315268Google Scholar
  44. 44.
    Wang Y, Zhou Ah (2007) Kernel sections and uniform attractors of multi-valued semiprocesses. J Differ Equat 232:573–622Google Scholar
  45. 45.
    Yang L, Yang MH (2010) Attractors of the non-autonomous reaction-diffusion equation with nonlinear boundary condition. Nonlinear Anal Real World Appl 11:3946–3954Google Scholar
  46. 46.
    Zhao C, Zhou Sh (2007) Compact kernel sections for nonautonomus Klein-Gordon-Schrödinger equations on infinite lattices. J Math Anal Appl 332:32–56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail Z. Zgurovsky
    • 1
  • Pavlo O. Kasyanov
    • 2
  • Oleksiy V. Kapustyan
    • 2
  • José Valero
    • 3
  • Nina V. Zadoianchuk
    • 2
  1. 1.Institute for Applied System AnalysisNational Academy of Science National Technical University of UkraineKyivUkraine
  2. 2.Kyiv Polytechnic Institute Institute for Applied System AnalysisNational Technical University of UkraineKyivUkraine
  3. 3.Centro de Investigación OperativaUniv. Miguel Hernández de ElcheAlicanteSpain

Personalised recommendations