Abstract Theory of Multivalued Semiflows

  • Mikhail Z. Zgurovsky
  • Pavlo O. Kasyanov
  • Oleksiy V. Kapustyan
  • José Valero
  • Nina V. Zadoianchuk
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 27)


Beginning from the pioneering works [3, 52], the theory of global attractors of infinite-dimensional dynamical systems has become one of the main objects for investigation. Since then, deep results about existence, properties, structure, and dimension of global attractors for a wide class of dissipative systems have been obtained (see, e.g., [7, 38, 54, 75, 78]). For the application of this classical theory to partial and functional differential equations, it was necessary to have global existence and uniqueness of solutions of the Cauchy problem for all initial data of the phase space.


Weak Solution Cauchy Problem Global Attractor Volterra System Bounded Open Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arrieta JM, Rodríguez-Bernal A, Valero J (2006) Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity. Internat J Bifur Chaos doi:10.1142/S0218127406016586Google Scholar
  2. 2.
    Aubin J-P, Cellina A (1984) Differential inclusions. Springer, BerlinGoogle Scholar
  3. 3.
    Aubin J-P, Frankowska H (1990) Set-valued analysis. Birkhauser, BostonGoogle Scholar
  4. 4.
    Babin AV (1995) Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain. Russian Academy of Sciences. Izvestiya Math. doi:10.1070/ IM1995v044n02ABEH001594Google Scholar
  5. 5.
    Babin AV, Vishik MI (1985) Maximal attractors of semigroups corresponding to evolutionary differential equations. Math Sbornik 126:397–419Google Scholar
  6. 6.
    Babin AV, Vishik MI (1986) Maximal attractors of semigroups, corresponding to evolution differential equations. Math USSR Sb doi:10.1070/SM1986v054n02ABEH002976Google Scholar
  7. 7.
    Babin AV, Vishik MI (1989) Attractors of evolution equations. Nauka, MoscowGoogle Scholar
  8. 8.
    Balibrea F, Caraballo T, Kloeden PE, Valero J (2010) Recent developments in dynamical systems: Three perspectives. Int J Bifur Chaos doi:10.1142/S0218127410027246Google Scholar
  9. 9.
    Ball JM (1997) Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. J Nonlinear Sci. doi:10.1007/s003329900037Google Scholar
  10. 10.
    Ball JM (2004) Global attractors for damped semilinear wave equations. DCDS. doi:10.3934/dcds.2004.10.31Google Scholar
  11. 11.
    Barbashin EA (1948) On the theoy of generalized dynamical systems. Moskov Gos Ped Inst Uchen Zap 135:110–133Google Scholar
  12. 12.
    Barbu V (1976) Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Noordhoff International Publishing, BucurestiGoogle Scholar
  13. 13.
    Bessaih H, Flandoli F (2000) Weak attractor for a dissipative Euler equation. J Dyn Differ Equat. doi:10.1023/A:1009042520953Google Scholar
  14. 14.
    Birnir B, Svanstedt N (2004) Existence and strong attractors for the Rayleigh-Bénard problem with a large aspect radio. Discrete Contin Dyn Syst. doi:10.3934/dcds.2004.10.53Google Scholar
  15. 15.
    Borisovich AV, Gelman BI, Myskis AD, Obukhovskii VV (1986) Introduction to the theory of multivalued maps. VGU, VoronezhGoogle Scholar
  16. 16.
    Brezis H (1972) Problemes unilateraux. J Math Pures Appl 51:377–406Google Scholar
  17. 17.
    Brezis H (1984) Análisis funcional. Alianza Editorial, MadridGoogle Scholar
  18. 18.
    Caraballo T, Langa J, Valero J (2002) Global attractors of multivalued random dynamical systems. Nonlinear Anal doi:10.1016/S0362-546X(00)00216-9Google Scholar
  19. 19.
    Caraballo T, Marin-Rubio P, Robinson JC (2003) A comparison between two theories for multi-valued semiflows and their asymptotic behavior. Set Valued Anal. doi:10.1023/A:1024422619616Google Scholar
  20. 20.
    Caraballo T, Marín-Rubio P, Valero J (2005) Autonomous and non-autonomous attractors for differential equations with delays. J Differ Equat doi:10.1016/j.jde.2003.09.008Google Scholar
  21. 21.
    Cheban D, Fakeeh D (1994) Global attractors of the dynamical systems without uniqueness. Sigma, KishinevGoogle Scholar
  22. 22.
    Chepyzhov VV, Vishik MI (1996) Trajectory attractors for reaction-diffusion systems. Topol Meth Nonlinear Anal 7:49–76Google Scholar
  23. 23.
    Chepyzhov VV, Vishik MI (1997) Evolution equations and their trajectory attractors. J Math Pure Appl. doi:10.1016/S0021-7824(97)89978-3Google Scholar
  24. 24.
    Chepyzhov VV, Vishik MI (1997) Trajectory attractors for evolution equations. C R Acad Sci Paris 321:1309–1314Google Scholar
  25. 25.
    Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. American Mathematical Society, RIGoogle Scholar
  26. 26.
    Chepyzhov VV, Vishik MI (2002) Trajectory and global attractors for 3D Navier–Stokes system. Mat Zametki doi:10.1023/A:1014190629738Google Scholar
  27. 27.
    Cheskidov A, Foias C (2006) On global attractors of the 3D Navier–Stokes equations. J Differ Equat. doi:10.1016/j.jde.2006.08.021Google Scholar
  28. 28.
    Chueshov ID (1993) Global attractors of nonlinear problems of the Mathematical Physics. Russ Math Surv. doi:10.1070/RM1993v048n03ABEH001033Google Scholar
  29. 29.
    Constantin P (2007) On the Euler equations of incompressible fluids. Bull Am Math Soc 44:603–621Google Scholar
  30. 30.
    Cutland NJ (2005) Global attractors for small samples and germs of 3D Navier–Stokes equations. Nonlinear Anal. doi:10.1016/ Scholar
  31. 31.
    Díaz JI, Hernández J, Tello L (1997) On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in Climatology. J Math Anal Appl. doi:10.1006/jmaa.1997.5691Google Scholar
  32. 32.
    Elmounir O, Simonolar F (2000) Abstracteurs compacts pur des problèmes d’evolution sans unicité. Annales de la Facult é des Sciences de Toulouse Série 6 IX:631–654Google Scholar
  33. 33.
    Fedorchuk VV, Filippov VV (1988) General topology. MGU, MoscowGoogle Scholar
  34. 34.
    Flandoli F, Schmalfuss B (1999) Weak solutions and attractors for three-dimensional Navier–Stokes equations with nonregular force. J Dyn Differ Equat doi:10.1023/A:1021937715194Google Scholar
  35. 35.
    Foias C, Temam R (1987) The connection between the Navier–Stokes equations, dynamical systems and turbulence theory. In: Directions in partial differential equations. Academic, New York, pp. 55–73Google Scholar
  36. 36.
    Gobbino M, Sardella M (1997) On the connectedness of attractors for dynamical systems. J Differ Equat. doi:10.1006/jdeq.1996.3166Google Scholar
  37. 37.
    Hale JK (1977) Introduction to functional differential equations. Springer, New YorkGoogle Scholar
  38. 38.
    Hale JK (1988) Asymptotic behavior of dissipative systems. AMS, RIGoogle Scholar
  39. 39.
    Hale JK, Lasalle JP (1972) Theory of a general class of dissipative processes. J Math Anal Appl. doi:10.1016/0022-247X(72)90233-8Google Scholar
  40. 40.
    Haraux A (1988) Attractors of asymptotically compact processes and applications to nonlinear partial differential equations. Comm Part Differ Equat 13:1383–1414Google Scholar
  41. 41.
    Hetzer G (2001) The shift-semiflow of a multivalued equation from climate modeling. Nonlinear Anal doi:10.1016/S0362-546X(01)00412-6Google Scholar
  42. 42.
    Hu S, Papageorgiou NS (1997) Handbook of multivalued analysis, volume I: Theory. Kluwer, DordrechtGoogle Scholar
  43. 43.
    Iovane G, Kapustyan OV (2006) Global attractors for non-autonomous wave equation without uniqueness of solution. Syst Res Inform Technol 2:107–120Google Scholar
  44. 44.
    Kapustyan AV, Melnik VS (1999) On global attractors of multivalued semidynamical systems and their approximations. Dokl Akad Nauk 366:445–448Google Scholar
  45. 45.
    Kapustyan AV, Valero J (2000) Attractors of multivalued semiflows generated by differential inclusions and their approximations. Abstr Appl Anal 5:33–46Google Scholar
  46. 46.
    Kapustyan AV, Valero J (2006) On the connectedness and asymptotic behavior of solutions of reaction-diffusion systems. J Math Anal Appl doi:10.1016/j.jmaa.2005.10.042Google Scholar
  47. 47.
    Kapustyan AV, Melnik VS, Valero J (2003) Attractors of multivalued dynamical processes generated by phase-field equations. Int J Biff Chaos doi:10.1142/S0218127403007801Google Scholar
  48. 48.
    Kapustyan OV, Valero J (2007) Weak and strong attractors for 3D Navier–Stokes system. J Differ Equat. doi:10.1016/j.jde.2007.06.008Google Scholar
  49. 49.
    Kapustyan OV, Valero J (2009) On the Kneser property for the Ginzburg–Landau equation and the Lotka–Volterra system with diffusion. J Math Anal Appl. doi:10.1016/j.jmaa.2009.04.010Google Scholar
  50. 50.
    Kapustyan OV, Valero J (2010) Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions. Int J Bifur Chaos. doi:10.1142/S0218127410027313Google Scholar
  51. 51.
    Kapustyan OV, Mel’nik VS, Valero J, Yasinsky VV (2008) Global atractors of multi-valued dynamical systems and evolution equations without uniqueness. Naukova Dumka, KyivGoogle Scholar
  52. 52.
    Ladyzhenskaya OA (1972) Dynamical system, generated by Navier–Stokes equations. Zap Nauch Sem LOMI 27:91–115Google Scholar
  53. 53.
    Ladyzhenskaya OA (1990) Some comments to my papers on the theory of attractors for abstract semigroups. Zap Nauchn Sem LOMI 188:102–112Google Scholar
  54. 54.
    Ladyzhenskaya OA (1991) Attractors for semigroups and evolution equations. University Press, CambridgeGoogle Scholar
  55. 55.
    Malek J, Necas J (1996) A finite-dimensional attractor for three dimensional flow of incompresible fluids. J Differ Equat doi:10.1006/jdeq.1996.0080Google Scholar
  56. 56.
    Malek J, Prazak D (2002) Large time behavior via the method of l-trajectories. J Differ Equat doi:10.1006/jdeq.2001.4087Google Scholar
  57. 57.
    Melnik VS (1994) Multivalued dynamics of non-linear infinite-dimensional systems. Preprint 94-71, Acad Sci UkraineGoogle Scholar
  58. 58.
    Melnik VS (1995) Families of multi-valued semiflows and their attractors. Dokl Ross Akad Nauk 343:302–305Google Scholar
  59. 59.
    Melnik VS (1995) Multivalued semidynamic systems and their attractors. Dokl Akad Nauk Ukraini 2:22–27Google Scholar
  60. 60.
    Melnik VS, Valero J (1996) On multivalued dynamical systems which are deliveried by evolution inclusions. In: Proceedings of the nonlinear oscillations conference, Praga, 9–13 Sept 1996, pp. 139–142Google Scholar
  61. 61.
    Melnik VS, Valero J (1997) On attractors of multivalued semidynamical systems generated by evolution inclusions. Dokl Ross Akad NaukGoogle Scholar
  62. 62.
    Melnik VS, Valero J (1997) On attractors of multivalued semidynamical systems in infinite dimensional spaces. Preprint, Universidad de Murcia 5:45Google Scholar
  63. 63.
    Melnik VS, Valero J (1998) On attractors of multivalued semiflows and differential inclusions. Set Valued Anal. doi:10.1023/A:1008608431399Google Scholar
  64. 64.
    Mielke A, Zelik SV (2002) Infinite-dimensional trajectory attractors of elliptoc boundary-value problems in cylindrical domains. Russ Math Surv doi:10.1070/RM2002v057n04ABEH000550Google Scholar
  65. 65.
    Morillas F, Valero J (2005) Attractors for reaction-diffusion equations in R N with continuous nonlinearity. Asymptot Anal 44:111–130Google Scholar
  66. 66.
    Morillas F, Valero J (2009) A Peano’s theorem and attractors for lattice dynamical systems. Int J Bifur Chaos. doi:10.1142/S0218127409023196Google Scholar
  67. 67.
    Norman DE (2001) Chemically reacting fluid flows: Weak solutions and global attractors. J Differ Equat doi:10.1006/jdeq.1998.3500Google Scholar
  68. 68.
    Otani M (1977) On existence of strong solutions for \(\frac{du} {dt} + \partial {\psi }^{1}\left (u\left (t\right )\right ) - \partial {\psi }^{2}\left (u\left (t\right )\right ) \ni f\left (t\right )\). J Fac Sci Univ Tokio Sect IA Math 24:575–605Google Scholar
  69. 69.
    Otani M (1984) Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems. J Differ Equat. doi:10.1016/0022-0396(84)90161-XGoogle Scholar
  70. 70.
    Papageorgiuou NS, Papalini F (1996) On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Acta Math Univ Comenianae 65:33–51Google Scholar
  71. 71.
    Rossi R, Segatti A, Stefanelli U (2008) Attractors for gradient flows of non convex functionals and appplications. Arch Rational Mech Anal. doi:10.1007/s00205-007-0078-0Google Scholar
  72. 72.
    Schimperna G (2007) Global attractors for Cahn–Hilliard equations with nonconstant mobility. Nonlinearity. doi:10.1088/0951-7715/20/8/010Google Scholar
  73. 73.
    Segatti A (2007) On the hyperbolic relaxation of the Cahn–Hilliard equation in 3D: Approximation and long time behaviour. Math Models Meth Appl Sci. doi:10.1142/S0218202507001978Google Scholar
  74. 74.
    Sell GR (1996) Global attractors for the three-dimensional Navier–Stokes equations. J Dyn Differ Equat. doi:10.1007/BF02218613Google Scholar
  75. 75.
    Sell GR, You Y (1995) Dynamics of evolutionary equations. Springer, New-YorkGoogle Scholar
  76. 76.
    Shnirelman A (1997) On the nonuniqueness of weak solution of the Euler equation. Comm Pure Appl Math L:261–1286Google Scholar
  77. 77.
    Shuhong F (1995) Global attractor for general nonautonomous dynamical systems. Nonlinear World 2:191–216Google Scholar
  78. 78.
    Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New YorkGoogle Scholar
  79. 79.
    Tolstonogov AA (1992) On solutions of evolution inclusions I. Siberian Math J. doi:10.1007/BF00970899Google Scholar
  80. 80.
    Tolstonogov AA, Umanskii YaI (1992) On solutions of evolution inclusions II. Siberian Math J. doi:10.1007/BF00971135Google Scholar
  81. 81.
    Valero J (1994) Attractors of both semidynamic systems and evolutionary inclusions. Dokl Akad Nauk Ukraini 5:7–11Google Scholar
  82. 82.
    Valero J (1995) On attractors of evolutionary inclusions in Banach spaces. Ukrainian Math J. doi:10.1007/BF01059043Google Scholar
  83. 83.
    Valero J (2000) Finite and infinite dimensional attractors of multivalued reaction-diffusion equations. Acta Math Hung. doi:10.1023/A:1006769315268Google Scholar
  84. 84.
    Valero J (2001) Attractors of parabolic equations without uniqueness. J Dyn Differ Equat. doi:10.1023/A:1016642525800Google Scholar
  85. 85.
    Vrabie II (1997) Compactness methods for nonlinear equations. Pitman Longman, LondonGoogle Scholar
  86. 86.
    Willard S (1970) General topology. Addison-Wesley, MAGoogle Scholar
  87. 87.
    Yamazaki N (2004) Attractors of asymptotically periodic multivalued dynamical systems governed by time-dependent subdifferentials. Elec J Differ Equat 107:1–22Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail Z. Zgurovsky
    • 1
  • Pavlo O. Kasyanov
    • 2
  • Oleksiy V. Kapustyan
    • 2
  • José Valero
    • 3
  • Nina V. Zadoianchuk
    • 2
  1. 1.Institute for Applied System AnalysisNational Academy of Science National Technical University of UkraineKyivUkraine
  2. 2.Kyiv Polytechnic Institute Institute for Applied System AnalysisNational Technical University of UkraineKyivUkraine
  3. 3.Centro de Investigación OperativaUniv. Miguel Hernández de ElcheAlicanteSpain

Personalised recommendations