Skip to main content

Theoretical and Experimental Fractionation Studies of Chloride and Bromide Isotopes

  • Chapter
The Geochemistry of Stable Chlorine and Bromine Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Diffusion probably is the most well known and most well understood process that is responsible for variations in chlorine and bromine isotope compositions. Molecular diffusion is the process in which matter is transported from one part of a system to another as a result of arbitrary molecular movements (Crank in The mathematics of diffusion. Oxford University Press, London, p 347, 1956). It was first described by Fick (Ann Phys 170:59–86, 1855). This work is now referred to as Fick’s First and Second Laws, and was published even before quantitative experimental measurements had ever been done. Lindemann (Proc Royal Soc London. Series A 99:102–104, 1921) already realised that, due to the mass difference of isotopes from a single element isotopes could theoretically be separated electrolytically. The first study where fractionation due to diffusion of chlorine isotopes was studied was already done in the 1940s (Madorsky and Straus in J Res Nat Bur Stand 38:185–189, 1947) and several more studies have been applied since then going from theoretical, experimental and field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder BJ, Alley WE, Dymond JH (1974) Studies in molecular dynamics. XIV. Mass and size` dependence of the binary diffusion coefficient. J Chem Phys 61:1415–1420

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden

    Google Scholar 

  • Atteberry RW, Boyd GE (1950) Separation of seventh group anions by ion-exchange chromatography. J Amer Chem Soc 72:4805–4806

    Google Scholar 

  • Barnes JD, Sharp ZD, Fischer TP (2008) Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36:883–886

    Google Scholar 

  • Barnes JD, Sharp ZD, Fisher TP, Hilton DR, Carr MJ (2009) Chlorine isotope variations along the Central American volcanic front and back arc. Geochem Geophys Geosys 10:Q11S17

    Google Scholar 

  • Beekman HE, Eggenkamp HGM, Appelo CAJ (2011) An integrated modelling approach to reconstruct complex solute transport mechanisms—Cl and δ37Cl in pore water of sediments from a former brackish lagoon in The Netherlands. Appl Geochem 26:257–268

    Google Scholar 

  • Bird RB, Steward WE, Lightfoot EN (2002) Transport Phenomena, 2nd ed. Wiley, New York

    Google Scholar 

  • Bourg IC, Sposito G (2007) Molecular dynamics simulations of kinetic isotope fractionation during the diffusion of ionic species in liquid water. Geochim Cosmochim Acta 71:5583–5589

    Google Scholar 

  • Bourg IC, Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: molecular dynamics simulations and hydrologic applications. Geochim Cosmochim Acta 72:2237–2247

    Google Scholar 

  • Bourg IC, Richter FM, Christensen JM, Sposito G (2010) Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochim Cosmochim Acta 74:2249–2256

    Google Scholar 

  • Brewer AK, Madorsky SL, Taylor JK, Dibeler VH, Bradt P, Parham OL, Britten RJ, Reid JG (1947) Concentration of isotopes of potassium by the counter-current electromigration method. J Res Natl Bur Stand 38:137–168

    Google Scholar 

  • Cameron AE, Herr W, Herzog W, Lundén A (1956) Isotopen-Anreicherung beim Brom durch electrolytische Überführung in geschmolzenem Bleibromid. Z Naturforschng 11a:203–205

    Google Scholar 

  • Campbell DJ (1985) Fractionation of stable chlorine isotopes during transport through semipermeable membranes. MS thesis, University of Arizona

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Crank J (1956) The mathematics of diffusion. Oxford University Press, London, p 347

    Google Scholar 

  • Czarnacki M, Hałas S (2012) Isotope fractionation in aqua-gas systems: Cl2-HCl-Cl-, Br2-HBr-Br- and H2S-S2-. Isot Environ Health Stud 48:55–64

    Google Scholar 

  • Desaulniers DE, Cherry JA, Fritz P (1981) Origin, age and movement of pore water in argillaceous Quaternary deposits at four sites in southwestern Ontario. J Hydrol 50:217–231

    Google Scholar 

  • Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl-35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764

    Google Scholar 

  • Duursma EK, Hoede C (1967) Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea. Part A: theories and mathematical calculations. Neth J Sea Res 3:423–457

    Google Scholar 

  • Eastoe CJ, Long A, Knauth LP (1999) Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines. Geochim Cosmochim Acta 63:1375–1382

    Google Scholar 

  • Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150. Thesis Utrecht University

    Google Scholar 

  • Eggenkamp HGM, Coleman ML (1997) Comparison of chlorine and bromine isotope fractionation in diffusion: geochemical consequences. In: In proceeding of the 7th Annual Goldschmidt conference, Tucson, p 213

    Google Scholar 

  • Eggenkamp HGM, Coleman ML (2009) The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim Cosmochim Acta 73:3539–3548

    Google Scholar 

  • Eggenkamp HGM, Middelburg JJ, Kreulen R (1994) Preferential diffusion of 35Cl relative to 37Cl in sediments of Kau Bay, Halmahera, Indonesia. Chem Geol (Isot Geosc Sect) 116:317–325

    Google Scholar 

  • Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175

    Google Scholar 

  • Eggenkamp HGM, Bonifacie M, Ader M, Agrinier P (2011) Fractionation of Cl and Br isotopes during precipitation of salts from their saturated solutions. 21th Annual V.M. Goldschmidt Conference. Prague, Czech Republic. Mineral Mag 75:798

    Google Scholar 

  • Eriksson E (1959) The yearly circulation of chlorines and sulfur in nature: Meteorological, geochemical and pedological implications. Tellus l:375–403

    Google Scholar 

  • Fick A (1855) Über Diffusion. Ann Phys 170:59–86

    Google Scholar 

  • Fink CG, Urey HC, Lake DB (1934) The diffusion of hydrogen through metals: fractionation of hydrogen isotopes. J Chem Phys 2:105–106

    Google Scholar 

  • Groen J, Velstra J, Meesters AGCA (2000) Salinization processes in paleowaters in coastal sediments from Suriname: evidence from δ37Cl analysis and diffusion modelling. J Hydrol 234:1–20

    Google Scholar 

  • Herzog W, Klemm A (1958) Die Temperaturabhängigkeit des Isotopie-Effekts bei der elektrolytischen Wanderungen der Chlorionen in herschmolzenem Thallium(I)-chlorid. Z Naturforschg 13a:7–16

    Google Scholar 

  • Heumann KG, Hoffmann R (1976) Chlorine isotope effects in ion exchange chromatography. Angew Chem Int Ed Eng 15:55

    Google Scholar 

  • Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199

    Google Scholar 

  • Howald RA (1960) Ion pairs. I. Isotope effects shown by chloride solutions in glacial acetic acid. J Amer Chem Soc 82:20–24

    Google Scholar 

  • Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87:5071–5083

    Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92:10767–10776

    Google Scholar 

  • Kaufmann RS (1984) Chlorine in groundwater: stable isotope distribution. PhD thesis, University of Arizona, Tucson

    Google Scholar 

  • Klemm A (1943) Isotopenanreicherung bei Diffusion von Kupfer in Silbersulfid. Z physikal Chemie 193:29–39

    Google Scholar 

  • Klemm A, Lundén A (1955) Isotopenanreicherung beim Chlor durch electrolytische Überfürung in geschmolzenem Bleichlorid. Z. Naturforschg. 10A:282–284

    Google Scholar 

  • Konstantinov BP, Bakulin EA (1965) Separation of chloride isotopes in aqueous solutions of lithium chloride, sodium chloride and hydrochloric acid. Rus J Phys Chem 39:315–318

    Google Scholar 

  • Langvad T (1954) Separation of chlorine isotopes by ion-exchange chromatography. Acta Chem Scand 8:526–527

    Google Scholar 

  • Lindemann FA (1921) Discussion on isotopes. Proc Royal Soc London. Series A 99:102–104

    Google Scholar 

  • Lundén A, Herzog W (1956) Isotopenanreicherung bei Chlor durch electrolytische Überführung in geschmolzenem Zinkchlorid. Z Naturforschg 11a:520

    Google Scholar 

  • Lundén A, Lodding A (1960) Isotopenanreicherung bei Brom durch electrolytische Überführung in geschmolzenem Zinkbromid. Z. Naturforschg. 15A:320–322

    Google Scholar 

  • Luo CG, Xiao YK, Wen HJ, Ma HH, Ma YQ, Zhang YL, Zhang YX, He MY (2014) Stable isotope fractionation of chloride during the precipitation of single chloride minerals. Appl Geochem 47:141–149

    Google Scholar 

  • Luo CG, Xiao YK, Ma HZ, Ma YQ, Zhang YL, He MY (2012) Stable isotope fractionation of chlorine during evaporation of brine from a saline lake. Chin Sci Bull 57:1833–1843

    Google Scholar 

  • Madorsky SL, Strauss S (1947) Concentration of isotopes of chlorine by the counter-current electromigration method. J Res Nat Bur Stand 38:185–189

    Google Scholar 

  • Marchese FT, Beveridge DL (1984) Pattern recognition approach to the analysis of geometrical features of solvation: application to the aqueous hydration of Li+, Na+, K+, F-, and Cl-. J Amer Chem Soc 106:3713–3720

    Google Scholar 

  • Maryott AA, Smith ER (1951) Table of dielectric constants of pure liquids. Nation Bur Stand Circ 514:44

    Google Scholar 

  • Middelburg JJ, De Lange GJ (1989) The isolation of Kau Bay during the last glaciation: direct evidence from interstitial water chlorinity. Neth J Sea Res 24:615–622

    Google Scholar 

  • Musashi M, Oi T, Eggenkamp HGM (2004) Experimental determination of chlorine isotope separation factor by anion-exchange chromatography. Anal Chim Acta 508:37–40

    Google Scholar 

  • Musashi M, Oi T, Eggenkamp HGM, Yato Y, Matsuo M (2007) Anion-exchange chromatographic study of the chlorine isotope effect accompanying hydration. J Chrom A 1140:121–125

    Google Scholar 

  • Nuevo MJ, Morales JJ, Heyes DM (1995) Mass dependence of isotope selfdiffusion by molecular dynamics. Phys Rev E 51:2026–2032

    Google Scholar 

  • Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. Theory. Geochim Cosmochim Acta 51:683–695

    Google Scholar 

  • Powell DH, Barnes AC, Enderby JE, Neilson GW, Salmon PS (1988) The hydration structure around chloride ions in aqueous solution. Faraday Discuss Chem Soc 85:137–146

    Google Scholar 

  • Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, Sturchio NC, Beloso AD Jr (2006) Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim Cosmochim Acta 70:277–289

    Google Scholar 

  • Riemann W, Lindenbaum S (1952) Analysis of mixtures of chloride and bromide by ion-exchange chromatography. Anal Chem 24:1199–1200

    Google Scholar 

  • Samoilov OY (1957) A new approach to the study of hydration of ions in aqueous solutions. Disc Faraday Soc 24:141–146

    Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281

    Google Scholar 

  • Schreiner F, Fried S, Friedman AM (1982) Measurement of radionuclide diffusion in oceanfloor sediment and clay. Nucl Technol 59:429–438

    Google Scholar 

  • Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Google Scholar 

  • Sharp ZD, Barnes JD, Fischer TP, Halick M (2010) An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles. Geochim Cosmochim Acta 74-264–273

    Google Scholar 

  • Tabor D (1991) Gases, Liquids and Solids, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tan HB, Ma HZ, Xiao YK, Wei HZ, Zhang XY, Ma WD (2005) Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in western Tarim basin. Sc China (ser. D) 48:1913–1920

    Google Scholar 

  • Tan HB, Ma HZ, Wei HZ, Xu JX, Li TW (2006) Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China. Geochem J 40:569–577

    Google Scholar 

  • Tan HB, Ma HZ, Zhang XY, Xu JX, Xiao YK (2009) Fractionation of chlorine isotope in salt mineral sequences and application: research on sedimentary stage of ancient salt rock deposit in Tarim Basin and western Qaidam Basin. Acta Petrol Sinica 25:955–962 (in Chinese with English abstract)

    Google Scholar 

  • Volpe C, Spivack AJ (1994) Stable chlorine isotopic composition of marine aerosol-particles in the Western Atlantic Ocean. Geophys Res Letters 21:1161–1164

    Google Scholar 

  • Volpe C, Wahlen M, Pszenny AAP, Spivack AJ (1998) Chlorine isotopic composition of marine aerosols: implications for the release of reactive chlorine and HCl cycling rates. Geophys Res Letters 25:3831–3834

    Google Scholar 

  • Willeke M (2003) Limits of the validity of the mass ratio independence of the Stokes-Einstein relation: molecular dynamics calculations and comparisons with the Enskog theory. Mol Phys 11:1123–1130

    Google Scholar 

  • Xiao YK, Liu WG, Zhou YM, Wang YH, Shirodkar PV (2000) Variations in isotopic compositions of chlorine in evaporation controlled salt lake brines of Qaidam Basin, China. Chin J Ocean Limn 18:169–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eggenkamp .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggenkamp, H. (2014). Theoretical and Experimental Fractionation Studies of Chloride and Bromide Isotopes. In: The Geochemistry of Stable Chlorine and Bromine Isotopes. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28506-6_7

Download citation

Publish with us

Policies and ethics