Preparation Techniques for the Analysis of Stable Chlorine Isotopes

Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Before the development of “modern” isotope ratio mass spectrometers (Nier in Rev Sci Inst 18:398–411, 1947; McKinney et al. in Rev Sci Inst 21:724–730, 1950) stable isotope ratios and variations in these ratios were measured by techniques such as gravimetric determination (e.g. Richards and Wells in J Amer Chem Soc 27:459–529, 1905; Curie in Compte Rend Sean 172:1025–1028, 1921) and mass spectrography (Aston in Phil Mag 42:140–144, 1921, Proc R Soc Lond A 132:487–498, 1931; Von Kallman and Lasareff in Z Phys 80:237–241, 1932; Nier and Hanson in Phys Rev 50:722–726, 1936).

Keywords

Hydrogen Chloride Silver Chloride Thermal Ionization Mass Spectrometry Cold Trap Organochlorine Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ader M, Coleman ML, Doyle SP, Stroud M, Wakelin D (2001) Methods for the stable isotopic analysis of chlorine in chlorate and perchlorate compounds. Anal Chem 73:4946–4950CrossRefGoogle Scholar
  2. Aeppli C, Holmstrand H, Andersson P, Gustafsson Ö (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82:420–426Google Scholar
  3. Aston FW (1919a) The constitution of the elements. Nature 104:393Google Scholar
  4. Aston FW (1919b) A positive ray spectrograph. Philos Mag 38:707–714Google Scholar
  5. Aston FW (1920) The mass spectra of the chemical elements. Phil Mag 39:611–625Google Scholar
  6. Aston FW (1921) The mass spectra of the chemical elements—Part 3. Phil Mag 42:140–144Google Scholar
  7. Aston FW (1925) Photographic plates for the detection of mass rays. Math Proc Cambridge Phil Soc 22:548–554Google Scholar
  8. Aston FW (1931) The isotopic constitution and atomic weights of selenium, bromine, boron, tungsten, antimony, osmium, ruthenium, tellurium, germanium, rhenium and chlorine. Proc R Soc Lond A 132:487–498Google Scholar
  9. Bao H, Gu B (2004) Natural perchlorate has its unique oxygen isotope signature. Environ Sci Technol 38:5073–5077Google Scholar
  10. Barnes JD, Selverstone J, Sharp ZD (2006) Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history. Geochem Geophys Geosys 7 Article number Q08015Google Scholar
  11. Bartholomew RM, Brown F, Lounsbury M (1954) Chlorine isotope effect in reactions of tert-butyl chloride. Canadian J Chem 32:979–983Google Scholar
  12. Behne W (1953) Untersuchungen zur Geochemie des Chlor und Brom. Geochim Cosmochim Acta 3:186–214Google Scholar
  13. Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Söder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem 83:7624–7634Google Scholar
  14. Blatt AH (1943) Organic synthesis, Col vol II. Wiley, New York, p 251Google Scholar
  15. Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista JR, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842Google Scholar
  16. Bonifacie M, Jendrzejewski N, Agrinier P, Coleman M, Pineau F, Javoy M (2007). Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples. Chem Geol 242:187–201Google Scholar
  17. Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520Google Scholar
  18. Boutton TW, Wong WW, Hachey DL, Lee LS, Cabrera MP, Klein PD (1983) Comparison of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Anal Chem 55:1832–1833Google Scholar
  19. Brown F, Gillies A, Stevens WH (1953) A note on the preparation of chlorine gas containing 36Cl. Can J Chem 31–768Google Scholar
  20. Callis E L, Abernathey RM (1991) High-precision analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom Ion Proc 103:93–105Google Scholar
  21. Catling DC, Clair MW, Zahnle KJ, Quinn RC, Clarc BC, Hecht MH, Kounaves SP (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00E11. doi: 10.1029/2009JE003425
  22. Curie I (1921) Sur le poids atomique du chlore dans quelques mineraux. Compte Rend Sean 172:1025–1028Google Scholar
  23. De Groot PA (2004) Handbook of stable isotope analytical techniques, vol I. Elsevier, AmsterdamGoogle Scholar
  24. Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl- 35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764Google Scholar
  25. Dorenfeldt M (1922) Relative determination of the atomic weight of chlorine in Bamle apatite. J Amer Chem Soc 45:1577–1579Google Scholar
  26. Dreibus C, Spettel B, Wänke H (1979) Halogens in meteorites and their primordial abundances. In: Ahrens LH (ed) Origin and distribution of the elements, vol 34. Pergamon Press, Oxford, pp 33–38Google Scholar
  27. Eastoe CJ, Guilbert JM, Kaufmann RS (1989) Preliminary evidence for fractionation of stable chlorine isotopes in ore forming hydrothermal systems. Geology 17:285–288Google Scholar
  28. Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150 (Thesis Utrecht University)Google Scholar
  29. Eggenkamp HGM (2004) Summary of methods for determining the stable isotope composition of chlorine and bromine in natural materials. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, Chapter 28. Elsevier, Amsterdam, pp 604–622Google Scholar
  30. Eggenkamp HGM, Schuiling RD (1995) δ37Cl variations in selected minerals: a possible tool for exploration. J Geochem Expl 55:249–255Google Scholar
  31. Eggenkamp HGM, Koster van Groos AF (1997) Chlorine stable isotopes in carbonatites: evidence for isotopic heterogeneity in the mantle. Chem Geol 140:137–143Google Scholar
  32. Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175Google Scholar
  33. Elsner M, Hunkeler D (2008) Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. Anal Chem 80:4731–4740Google Scholar
  34. Ericksen GE (1981) Geology and origin of the Chilean nitrate deposits. USGS professional paper 1188, p 37Google Scholar
  35. Fietzke J, Frische M, Hansteen TH, Eisenhauer A (2008) A simplified procedure for the determination of stable chlorine isotope ratios (δ37Cl) using LA-MC-ICP-MS. J Anal Atom Spectrom 23:769–772Google Scholar
  36. Fujitani T, Nakamura N (2006) Determination of chlorine in nine rock reference materials by isotope dilution mass spectrometry. Geostd Geoanl Res 30:113–120Google Scholar
  37. Fujitani T, Yamashita K, Numata M, Kanazawa N, Nakamura N (2010) Measurement of chlorine stable isotopic composition by negative thermal ionization mass spectrometry using total evaporation technique. Geochem J 44:241–246Google Scholar
  38. Gan YQ, Yu TT, Zhou AG, Liu YD, Liu CF (2013) A Technique for Carbon and Chlorine isotope analyses of chlorinated aliphatic hydrocarbons in groundwater. J Earth Sci 24:274–281Google Scholar
  39. Gaudette HE (1990) Chlorine and boron isotopic analyses of Antarctic ice and snow: indicators of marine and volcanic atmospheric inputs. Geol Soc Amer Ann Meeting 1990:173Google Scholar
  40. Gleditsch E, Samdahl B (1922) Radioactivité sur le poids atomique de chlore dans un mineral ancien, l’apatede Balme. Compte Rend Sean 174:746–748Google Scholar
  41. Godon A (2000) La subduction des Petites Antilles: apports de la géochimie isotopique du chlore. PhD thesis, Paris VII University, p 300 (Abstract in English)Google Scholar
  42. Godon A, Jendrzejewski N, Eggenkamp HGM, Banks DA, Ader M, Coleman ML, Pineau F (2004a) A cross calibration of chlorine isotopic measurements and suitability of seawater as the international reference material. Chem Geol 207:1–12Google Scholar
  43. Godon A (2000) La subduction des Petites Antilles: apports de la géochimie isotopique du chlore. PhD thesis, Paris VII Univ. 300 pp (In French with abstract in English)Google Scholar
  44. Godon A, Webster JD, Layne GD, Pineau F (2004b) Secondary ion mass spectrometry for the determination of δ37Cl. Part II. Intercalibration of SIMS and IRMS for aluminosilicate glasses. Chem Geol 207:291–303Google Scholar
  45. Gu B, Brown GM, Maya L, Lance MJ, Moyer BA (2001) Regeneration of perchlorate (ClO4 )-loaded anion exchange resins by novel tetrachloroferrate (FeCl4 ) displacement technique. Environ Sci Technol 35:3363–3368Google Scholar
  46. Gu B, Brown GM, Chiang CC (2007) Treatment of perchlorate contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ Sci Technol 41:6277–6282Google Scholar
  47. Gu B, Böhlke JK, Sturchio NC, Hatzinger PB, Jackson WA, Beloso AD Jr, Heraty LJ, Bian Y, Brown GM (2011) Removal, recovery and fingerprinting of perchlorate by ion exchange processes. In: SenGupta AK (ed) Ion exchange and solvent extraction: a series of advances, vol 20. CRC Press, Boca RatonGoogle Scholar
  48. Halas S, Pelc A (2009) New isotope ratio mass spectrometric method of precise δ37Cl determinations. Rapid Commun Mass Spectrom 23:1061–1064Google Scholar
  49. Harkins WD, Stone SB (1926) The isotopic composition and atomic weight of chlorine from meteorites and from minerals of non-marine origin. J Amer Chem Soc 48:938–949Google Scholar
  50. Hauri E, Wang J, Dixon JE, King PE, Mandeville C, Newman S (2000) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114Google Scholar
  51. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325:64–67Google Scholar
  52. Herzog W, Dörnenburg E (1958) Die Verwendung van Methylchlorid zur massenspektrometrichen Isotopenanalyse von Chlor. Z Naturforschg 13a:51–52Google Scholar
  53. Herzog W, Klemm A (1958) Die Temperaturabhängigkeit des Isotopie-Effekts bei der elektrolytischen Wanderungen der Chlorionen in herschmolzenem Thallium(I)-chlorid. Z Naturforschg 13a:7–16Google Scholar
  54. Hill JW, Fry A. (1962) Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles. J Amer Chem Soc 84:2763–2769Google Scholar
  55. Hintze C (1915) Handbuch der Mineralogie. Verlag von Veit & Comp. LeipzigGoogle Scholar
  56. Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25:3114–3122Google Scholar
  57. Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199Google Scholar
  58. Holmstrand H, Andersson P, Gustafsson Ö (2004) Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry. Anal. Chem. 76:2336–2342Google Scholar
  59. Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69:2727–2733Google Scholar
  60. Holt BD, Heraty LJ, Sturchio NC (2001) Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine. Environ Poll 113:263–269Google Scholar
  61. Howald RA (1960) Ion pairs. I. Isotope effects shown by chloride solutions in glacial acetic acid. J Amer Chem Soc 82:20–24Google Scholar
  62. Jackson WA, Anandam SK, Anderson T, Lehman T, Rainwater K, Rajagopalan S, Ridley M, Tock R (2005) Perchlorate occurrence in the Texas southern high plains aquifer system. Ground Water Monit Rem 25:137–149Google Scholar
  63. Jendrzejewski N, Eggenkamp HGM, Coleman ML (1997) Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent. Anal Chem 69:4259–4266Google Scholar
  64. Jin B, Laskov C, Rolle M, Haderlein SB (2011) Chlorine isotope analysis of organic contaminants using GCqMS: method optimization and comparison of different evaluation schemes. Environ Sci Technol 45:5279–5286Google Scholar
  65. Joan M, Reedy JH (1940) The detection of oxy-halogen anions. Trans Illinois State Acad Sci 33:123–125Google Scholar
  66. Johnston WH, Arnold JR (1953) The existence of multiply charged molecular ions of HBr, HCl, and DCl. J Chem Phys 21:1499–1502Google Scholar
  67. Kaufmann RS (1984) Chlorine in groundwater: Stable isotope distribution. Ph.D. thesis, University of Arizona, Tucson, ArizGoogle Scholar
  68. Kaufmann RS, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309:338–340Google Scholar
  69. Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645Google Scholar
  70. Klemm A, Lundén A (1955) Isotopenanreicherung beim Chlor durch electrolytische Überfürung in geschmolzenem Bleichlorid. Z. Naturforschg. 10A:282–284Google Scholar
  71. Kohnen MEL (1988) Stabiele chloorisotopen onderzoek. Internal report, University of Utrecht, p 17Google Scholar
  72. Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK, Zent AP (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364Google Scholar
  73. Kuroda PK, Sandell EB (1953) Chlorine in igneous rocks. Bull Geol Soc Amer 64:879–896Google Scholar
  74. Kusakabe M (2005) A closed pentane trap for separation of SO2 from CO2 for precise δ18O and δ34S measurements. Geochem J 39:285–287Google Scholar
  75. Langvad T (1954) Separation of chlorine isotopes by ion-exchange chromatography. Acta Chem Scand 8:526–527Google Scholar
  76. Layne GD, Godon A, Webster JD, Bach W (2004) Secondary ion mass spectrometry for the determination of δ37Cl. Part I. Ion microprobe analysis of gasses and fluids. Chem Geol 207:277–289Google Scholar
  77. Liggett LM (1954) Determination of organic halogen with sodium biphenyl reagent. Anal Chem 26:748–750Google Scholar
  78. Liu WG, Xiao YK, Wang QZ, Qi HP, Wang YH, Zhou YM, Shirodkar PV (1997) Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China. Chem Geol 136:271–279Google Scholar
  79. Liu YD, Zhou AG, Gan YQ, Liu CF, Yu TT, Li XQ (2013) An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. J South Centr Univ 20:193–198Google Scholar
  80. Long A, Eastoe CJ, Kaufmann RS, Martin JG, Wirt L, Finley JB (1993) High-precision measurement of chlorine stable isotope ratios. Geochim Cosmochim Acta 57:2907–2912Google Scholar
  81. Lundén A, Herzog W. (1956) Isotopenanreicherung bei Chlor durch electrolytische Überführung in geschmolzenem Zinkchlorid. Z Naturforschg 11a:520Google Scholar
  82. Madorsky SL, Strauss S (1947) Concentration of isotopes of chlorine by the counter-current electromigration method. J Res Nat Bur Stand 38:185–189Google Scholar
  83. Magenheim AJ, Spivack AJ, Volpe C, Ransom B (1994) Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121Google Scholar
  84. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186Google Scholar
  85. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Inst 21:724–730Google Scholar
  86. Ming DW, Smith PH, Tamppari LK, Zent AP (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364Google Scholar
  87. Musashi M, Markl G, Kreulen R (1998) Stable chlorine-isotope analysis of rock samples: new aspects of chlorine extraction. Anal Chem Acta 362:261–269Google Scholar
  88. Musashi M, Eggenkamp HGM, Van Cappellen PH (2010) Experiment on chlorine extraction from chlorinated pollutants by supercritical water and their Cl isotope analysis. Bull Sc Technol Shibaura Inst Technol 54:57–61 (In Japanese with English abstract)Google Scholar
  89. Nešković OM, Veljković MV, Veličković SR, Derić AJ, Miljević NR, Golobočanin DD (2002) Precise measurement of chlorine isotopes by thermal ionization mass spectrometry. Nukleonika. 1(Supp 47):s85–s87Google Scholar
  90. Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Inst 18:398–411Google Scholar
  91. Nier AO (1955) Determination of isotopic masses and abundances by mass spectrometry. Science 121:737–744Google Scholar
  92. Nier AO, Hanson EE (1936) A mass-spectrographic analysis of the ions produced in HCl under electron impact. Phys Rev 50:722–726Google Scholar
  93. Nier AO, Ney EP, Inghram MG (1946) A null method for the comparison of two ion currents in a mass spectrometer. Phys Rev 70:116–117Google Scholar
  94. Numata M, Nakamura N, Gamo T (2001) Precise measurement of chlorine stable isotopic ratios by thermal ionization mass spectrometry. Geochem J 35:89–100Google Scholar
  95. Owen HR, Schaeffer OA (1955) The isotope abundances of chlorine from various sources. J Amer Chem Soc 77:898–899Google Scholar
  96. Parker DR, Seyfferth AL, Reese BK (2008) Perchlorate in groundwater: a synoptic survey of “pristine” sites in the conterminous Unites States. Environ Sci Technol 42:1465–1471Google Scholar
  97. Pelc A, Halas S (2008) Negative ion source for chlorine isotope ratio measurements. Rapid Commun Mass Spectrom 22:3977–3982Google Scholar
  98. Plummer LN, Böhlke JK, Doughten MW (2006) Perchlorate in Pleistocene and Holocene groundwater in north-central New Mexico. Environ Sci Technol 40:1757–1763Google Scholar
  99. Rajagopalan S, Anderson TA, Fahlquist L, Rainwater KA, Ridley M, Jackson WA (2006) Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico. Environ Sci Technol 40:3156–3162Google Scholar
  100. Rajagopalan S, Anderson TA, Cox S, Harvey G, Cheng Q, Jackson WA (2009) Perchlorate in wet deposition across North America. Environ Sci Technol 43:616–622Google Scholar
  101. Rao B, Anderson TA, Orris GJ, Rainwater KA, Rajagopalan S, Sandvig RM, Scanlon BR, Stonestrom DA, Walvoord MA, Jackson WA (2007) Widespread natural perchlorate in unsaturated zones of the Southwest United States. Environ Sci Technol 41:4522–4528Google Scholar
  102. Rees CE (1978) Sulphur isotope measurements using SO2 and SF6. Geochim Cosmochim Acta 42:383–389Google Scholar
  103. Richards TW, Wells RC (1905) A revision of the atomic weights of sodium and chlorine. J Amer Chem Soc. 27:459–529Google Scholar
  104. Rosenbaum JM, Cliff RA, Coleman M.L. (2000) Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal Chem 72:2261–2264Google Scholar
  105. Sakaguchi-Söder KA (2010) New method for compound-specific stable chlorine isotope analysis: basics and application. PhD thesis, Technische Universität, Darmstadt, GermanyGoogle Scholar
  106. Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21:3077–3084Google Scholar
  107. Schnetger B, Muramatsu Y (1996) Determination of halogens, with special reference to, iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 121:1627–1631Google Scholar
  108. Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065Google Scholar
  109. Shields WR, Murphy TJ, Garner EL, Dibeler VH (1962) Absolute isotopic abundance ratios and the isotopic weight of chlorine. J Amer Chem Soc 84:1519–1522Google Scholar
  110. Shirodkar PV, Xiao YK, Sarkar A, Dalal SG, Chivas AR (2006) Influence of air-sea fluxes on chlorine isotopic composition of ocean water: Implications for constancy in δ37Cl—a statistical inference. Environ Intern 32:235–239Google Scholar
  111. Shouakar-Stash O, Drimmie RJ, Frape SK (2005) Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 19:121–127Google Scholar
  112. Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geoch 21:766–781Google Scholar
  113. Stull DR (1947) Vapour pressure of pure substances. Inorganic compounds. Ind Eng Chem 39:540–550Google Scholar
  114. Sturchio NC, Hatzinger PB, Arkins MD, Suh C, Heraty LJ (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863Google Scholar
  115. Sturchio NC, Böhlke JK, Gu B, Horita J, Brown GM, Beloso AD Jr, Hatzinger PB, Jackson WA, Batista JR (2006) Stable isotopic compositions of chlorine and oxygen in synthetic and natural perchlorates. In: Gu B, Coates JD (eds) Perchlorate environmental occurrences, interactions, and treatment. Springer, New York, pp 93–109Google Scholar
  116. Sturchio NC, Böhlke JK, Beloso AD Jr, Streger SH, Heraty LJ, Hatzinger PB (2007) Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: laboratory results and implications for forensics and natural attenuation studies. Environ Sci Technol 41:2796–2802Google Scholar
  117. Sturchio NC, Böhlke JK, Gu BH, Hatzinger PB, Jackson WA (2011) Isotopic tracing of perchlorate in the environment. In: M Baskaran (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer, Berlin HeidelbergGoogle Scholar
  118. Suzuki K, Miyata Y, Kanazawa N (2004) Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique. Int J Mass Spectrom 235:97–101Google Scholar
  119. Tanaka N, Rye DM (1991) Chlorine in the stratosphere. Nature 353:707Google Scholar
  120. Taylor JW, Grimsrud EP (1969) Chlorine isotopic ratios by negative ion mass spectrometry. Anal Chem 41:805–810Google Scholar
  121. Thornton B, Horst A, Carrizo D, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) A high-volume cryosampler and sample purification system for bromine isotope studies of methyl bromide. J Atmos Ocean Techn 30:2095–2107Google Scholar
  122. Turnquist CR, Taylor JW, Grimsrud EP, Williams RC (1973) Temperature dependence of chlorine kinetic isotope effects for aliphatic chlorides. J Amer Chem Soc 95:4133–4138Google Scholar
  123. Van Acker MRMD, Shahar A, Young ED, Coleman ML (2006) GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78:4663–4667Google Scholar
  124. Van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem 10:547–552Google Scholar
  125. Vengosh A, Chivas AR, McCulloch MT (1989) Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem Geol (Isot Geosci Sect) 79:333–343Google Scholar
  126. Vogel AI (1951) A textbook of quantitative inorganic analysis, theory and practice. Longmans, Green and Co., London, p 918Google Scholar
  127. Vogel AI (1989) A textbook of quantitative inorganic analysis, theory and practice, 5th ed.; revised by Jeffrey GH et al. Longmans, Green and Co., LondonGoogle Scholar
  128. Volpe C, Spivack AJ (1994) Stable chlorine isotopic composition of marine aerosol-particles in the Western Atlantic Ocean. Geophys Res Letters 21:1161–1164Google Scholar
  129. Von Kallman H, Lasareff W (1932) Über die Isotopenuntersuchungen (Sauerstoff, Neon und Chlor). Z Phys 80:237–241Google Scholar
  130. Von Rothmund V (1909) Concerning the reduction and determination of perchlorate. Z Anorg Chem 62:108–113Google Scholar
  131. Wakaki S, Shibata S, Tanaka T (2007) Isotope ratio measurements of trace Nd by the total evaporation normalization (TEN) method in thermal ionization mass spectrometry. Int J Mass Specrrom 264:157–163Google Scholar
  132. Wassenaar LI, Koehler G. (2004) On-line technique for the determination of the δ37Cl of inorganic and total organic Cl in Environmental Samples. Anal Chem 76:6384–6388Google Scholar
  133. Westaway KC, Koerner T, Fang YR, Rudziñski J, Paneth P (1998) A new method of determining chlorine kinetic isotope effects. Anal Chem 70:3548–3552Google Scholar
  134. Whitehead D, Thomas JE (1985) Use a nebulizer in pyrohydrolytic decomposition of silicate materials for determination of fluorine and chlorine. Anal Chem 57:2421–2423Google Scholar
  135. Wieser ME, Coplen TB (2010) Atomic weights of the elements 2009 (IUPAC technical report). Pure Appl Chem 83:359–396Google Scholar
  136. Williams RC, Taylor JW (1973) Chlorine kinetic isotope-effect models. 1. Isotopic dependence in nominal C-Cl stretching vibrations of aliphatic chlorides and vibrational analysis of tert-butyl chloride ground-state. J Amer Chem Soc 95:1710–1714Google Scholar
  137. Wu JH, Satake H (2006) Purification of CH3Cl from CH3I using cold trap with sealed 2,2,4-trimethylpentane for δ37Cl measurement. Anal Chim Acta 555:41–46Google Scholar
  138. Xiao YK, Zhang CG (1992) High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Intl J Mass Spectrom Ion Proc 116:183–192Google Scholar
  139. Xiao YK, Beary ES, Fassett JD (1988) An improved method for the high-precision isotopic measurement of boron by thermal ionization mass-spectrometry. Intl J Mass Spectrom Ion Proc 85:203–213Google Scholar
  140. Xiao YK, Jin L, Qi HP (1991) Investigation of thermal ion emission characteristics of graphite. Intl J Mass Spectrom Ion Proc 107:205–213Google Scholar
  141. Xiao YK, Zhou YM, Liu WG (1995) Precise measurement of chlorine isotopes based on Cs2Cl+ by thermal ionization mass-spectrometry. Anal Lett 28:1295–1304Google Scholar
  142. Xiao YK, Zhou YM, Wang QZ. Wei HZ, Liu WG, Eastoe CJ (2002) A secondary isotopic reference material of chlorine from selected seawater. Chem Geol 182:655–661Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations