Natural Variations of Stable Chlorine and Bromine Isotopes on Earth

Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Chlorine and bromine on earth are distributed quite systematically in the large geological reservoirs. Due to their chemical character, both elements are primarily concentrated in the fluid phase of any system and as a consequence, they are highly concentrated in the oceans on earth.

Keywords

Isotope Composition Fluid Inclusion Oceanic Crust Bromide Concentration Chlorine Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrinier P, Coleman M, Bonifacie M (2011) A review of the analytical accuracy of Cl isotope measurments in rocks by various techniques: a way to explain inconsistency between results. In: 21th annual V.M. Goldschmidt conference. Prague, Czech Republic (Mineral Mag 75:413)Google Scholar
  2. Bagheri R (2013) Hydrochemistry and sources of connate water in the Zagros aquifers. PhD Thesis Shiraz University, IranGoogle Scholar
  3. Bagheri R, Nadri A, Raeisi E, Eggenkamp HGM, Kazemi GA, Montaseri A (2014a) Hydrochemistry and isotope (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) applications: clues to the origin of saline produced water in a gas reservoir. Chem Geol 384:62–f75Google Scholar
  4. Bagheri R, Nadri A, Raeisi E, Kazemi GA, Eggenkamp HGM, Montaseri A (2014b) Origin of brine in the Kangan Gasfield: Isotopic and hydrogeochemical approaches. Environ Earth Sci 72:1055–1072Google Scholar
  5. Banks DA, Green R, Cliff RA, Yardley BWD (2000a) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789CrossRefGoogle Scholar
  6. Banks DA, Gleeson SA, Green R (2000b) Determination of the origin of salinity in granite-related fluids: evidence from chlorine isotopes in fluid incusions. J Geochem Expl 69–70:309–312CrossRefGoogle Scholar
  7. Barnes JD, Sharp ZD (2006) A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. Chem Geol 228:246–265CrossRefGoogle Scholar
  8. Barnes JD, Selverstone J, Sharp ZD (2006) Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history. Geochem Geophys Geosys 7 (Article number Q08015)Google Scholar
  9. Barnes JD, Sharp ZD, Fischer TP (2008) Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36:883–886CrossRefGoogle Scholar
  10. Barnes JD, Sharp ZD, Fisher TP, Hilton DR, Carr MJ (2009) Chlorine isotope variations along the Central American volcanic front and back arc. Geochem Geophys Geosys 10 (Article number Q11S17)Google Scholar
  11. Barnes JD, Eldam R, Lee CTA, Errico JC, Loewy S, Cisneros M (2013) Petrogenesis of serpentinites from the Franciscan Complex, western California, USA. Lithos 178:143–157CrossRefGoogle Scholar
  12. Beekman HE, Eggenkamp HGM, Appelo CAJ (2011) An integrated modelling approach to reconstruct complex solute transport mechanisms—Cl and δ37Cl in pore water of sediments from a former brackish lagoon in The Netherlands. Appl Geochem 26:257–268CrossRefGoogle Scholar
  13. Berner EK, Berner RA (1987) The global water cycle: geochemistry and environment. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  14. Blaxland AB, Van Breemen O, Steenfelt A (1976) Age and origin of agpaitic magmatism at Ilímaussaq, South Greenland: Rb-Sr study. Lithos 9:31–38CrossRefGoogle Scholar
  15. Bonifacie M, Jendrzejewski N, Agrinier P, Coleman M, Pineau F, Javoy M (2007) Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples. Chem Geol 242:187–201CrossRefGoogle Scholar
  16. Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008a) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520CrossRefGoogle Scholar
  17. Bonifacie M, Busigny V, Mével C, Philippot P, Agrinier P, Jendrzejewski N, Scambelluri M, Javoy M (2008b) Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim Cosmochim Acta 72:126–139CrossRefGoogle Scholar
  18. Boschetti T, Toscani L, Shouakar-Stash O, Iacumin P, Venturelli G, Mucchino C, Frape SK (2011) Salt waters of the northern apennine foredeep basin (Italy): origin and evolution. Aquat Geochem 17:71–108Google Scholar
  19. Braitsch O (1962) Entstehung und Stoffbestand der Salzlagerstätten. Springer, BerlinGoogle Scholar
  20. Braitsch O (1971) Salt deposits, their origin and composition. Springer, Berlin, 288 pGoogle Scholar
  21. Broeker WS, Peng TH (1982) Tracers in the sea. Eldigio Press Lamont Doherty Geological ObservatoryGoogle Scholar
  22. Campbell DJ (1985) Fractionation of stable chlorine isotopes during transport through semipermeable membranes. MS. thesis, University of ArizonaGoogle Scholar
  23. Davies SN, Whittemore DO, Fabryka-Martin J (1998) Use of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350CrossRefGoogle Scholar
  24. Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl–35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764CrossRefGoogle Scholar
  25. Du Y, Ma T, Yang J, Liu L, Shan HM, Cai HS, Liu CF, Chen LZ (2013) A precise analytical method for bromine stable isotopes in natural waters by GasBench II-IRMS. Int J Mass Spectrom 338:50–56CrossRefGoogle Scholar
  26. Eastoe CJ, Peryt T (1999) Multiple sources of chloride in Badenian evaporites, Carpathian mountains: stable chlorine isotope evidence. Terra Nova 11:118–123CrossRefGoogle Scholar
  27. Eastoe CJ, Guilbert JM, Kaufmann RS (1989) Preliminary evidence for fractionation of stable chlorine isotopes in ore forming hydrothermal systems. Geology 17:285–288CrossRefGoogle Scholar
  28. Eastoe CJ, Long A, Knauth LP (1999) Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines. Geochim Cosmochim Acta 63:1375–1382CrossRefGoogle Scholar
  29. Eastoe CJ, Long A, Land LS, Kyle JR (2001) Stable chlorine isotopes in halite and brine from the Guld Coast Basin: brine genesis. Chem Geol 176:343–360CrossRefGoogle Scholar
  30. Eastoe CJ, Peryt TM, Petrychenko OY, Geisler-Cussey D (2007) Stable chlorine isotopes in Phanerozoic evaporites. Appl Geochem 22:575–588CrossRefGoogle Scholar
  31. Egeberg PK, Dickens G (1999) Thermodynamic and pore-water halogen constraints on gas hydrate distribution at ODP site 997 (Blake Ridge). Chem Geol 153:53–79CrossRefGoogle Scholar
  32. Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150 (Thesis Utrecht University)Google Scholar
  33. Eggenkamp HGM (1995) Bromine stable isotope fractionation: experimental determination on evaporites. European Union of Geosciences, 8th Congress. Terra Nova 7 Abst. Supp. 1, 331Google Scholar
  34. Eggenkamp HGM, Coleman ML (1997) Comparison of chlorine and bromine isotope fractionation in diffusion: Geochemical consequences. 7th annual Goldschmidt Conference, Tucson, Az. p 213Google Scholar
  35. Eggenkamp HGM, Coleman ML (2000) Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem Geol 167:393–402CrossRefGoogle Scholar
  36. Eggenkamp HGM, Coleman ML (2009) The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim Cosmochim Acta 73:3539–3548CrossRefGoogle Scholar
  37. Eggenkamp HGM, Koster van Groos AF (1997) Chlorine stable isotopes in carbonatites: evidence for isotopic heterogeneity in the mantle. Chem Geol 140:137–143CrossRefGoogle Scholar
  38. Eggenkamp HGM, Middelburg JJ, Kreulen R (1994) Preferential diffusion of 35Cl relative to 37Cl in sediments of Kau Bay, Halmahera, Indonesia. Chem Geol (Isot Geosc Sect) 116:317–325Google Scholar
  39. Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175CrossRefGoogle Scholar
  40. Eggenkamp HGM, Pouya A, Coleman ML (1997) Can diffusion and shale compaction be causes of chlorine isotope fractionation in basinal brines? In: Second international conference on fluid evolution, migration and interaction in sedimentary basins and orogenic belts. Belfast, Northern Ireland, 10–14 March. Geofluids II ‘97 Extended abstract pp 322–325Google Scholar
  41. Eggenkamp HGM, Bonifacie M, Ader M, Agrinier P. (2011) Fractionation of Cl and Br isotopes during precipitation of salts from their saturated solutions. 21th annual V.M. Goldschmidt conference. Prague, Czech Republic (Mineral Mag 75:798)Google Scholar
  42. Gleeson SA, Smith MP (2009) The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochim Cosmochim Acta 73:5658–5672CrossRefGoogle Scholar
  43. Godon A, Jendrzejewski N, Eggenkamp HGM, Banks DA, Ader M, Coleman ML, Pineau F (2004a) A cross calibration of chlorine isotopic measurements and suitability of seawater as the international reference material. Chem Geol 207:1–12CrossRefGoogle Scholar
  44. Godon A, Webster JD, Layne GD, Pineau F (2004b) Secondary ion mass spectrometry for the determination of δ37Cl. Part II. Intercalibration of SIMS and IRMS for aluminosilicate glasses. Chem Geol 207:291–303CrossRefGoogle Scholar
  45. Godon A, Jendrzejewski N, Castrec-Rouelle M, Dia A, Pineau F, Boulège J, Javoy M (2004c) Origin and evolution of fluids from mud volcanos in the Barbadas accretionary complex. Geochim Cosmochim Acta 68:2153–2165CrossRefGoogle Scholar
  46. Groen J, Velstra J, Meesters AGCA (2000) Salinization processes in paleowaters in coastal sediments from Suriname: evidence from δ37Cl analysis and diffusion modelling. J Hydrol 234:1–20CrossRefGoogle Scholar
  47. Gwynne R, Frape S, Shouakar-Stash O, Love A (2013) 81Br, 37Cl and 87Sr studies to assess groundwater flow and solute sources in the southwestern great Artesian Basin, Australia. Proc Earth Planet Sci 7:330–333CrossRefGoogle Scholar
  48. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade? Earth Sci Rev 61:149–179CrossRefGoogle Scholar
  49. Hesse R, Frape SK, Egeberg PK, Matsumoto R (2000) Stable isotope studies (Cl, O and H) of interstitial waters from site 997, Blake Ridge gas hydrate field, West Atlantic. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WD (eds) Proceedings of the ocean drilling program, scientific results, 164: College Station, TX (Ocean Drilling Program) pp 129–137Google Scholar
  50. Hesse R, Egeberg PK, Frape SK (2006) Chlorine stable isotope ratios as a tracer for pore-water advection rates in a submarine gas-hydrate field: implication for hydrate concentration. Geofluids 6:1–7CrossRefGoogle Scholar
  51. Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199CrossRefGoogle Scholar
  52. Horst A (2013) Stable bromine isotopic composition of methyl bromide. Method development and applications. PhD thesis Stockholm UniversityGoogle Scholar
  53. Horst A, Thornton BJ, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) Stable bromine isotopic composition of atmospheric CH3Br. Tellus Ser B Chem Phys Meteor 65 (Article no. 21040)Google Scholar
  54. John T, Layne GD, Haase KM, Barnes JD (2010) Chlorine isotope evidence for crustal recycling into Earth’s mantle. Earth Planet Sci Lett 298:175–182CrossRefGoogle Scholar
  55. John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci 308:65–76CrossRefGoogle Scholar
  56. Kastner M, Elderfield H, Jenkins WJ, Gieskes JM, Gamo T (1993) Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. In: Hill IA, Taira A (eds) Proceedings of the ocean drilling program, Scientific Results, Leg 131: College Station, Texas, ODP, pp 397–416Google Scholar
  57. Kaufmann RS (1984) Chlorine in groundwater: stable isotope distribution. PhD thesis, University of Arizona, Tucson, ArizGoogle Scholar
  58. Kaufmann RS, Frape S, Fritz P, Bentley H (1987) Chlorine stable isotope composition of Canadian shield brines. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Canada (Special Paper 33:89–93)Google Scholar
  59. Kaufmann RS, Long A, Campbell DJ (1988) Chlorine isotope distribution in formation waters, Texas and Louisiana. AAPG Bull 72:839–844Google Scholar
  60. Kaufmann RS, Frape SK, McNutt R, Eastoe CJ (1993) Chlorine stable isotope distribution of Michigan basin formation waters. Appl Geoch 8:403–407CrossRefGoogle Scholar
  61. Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554–555CrossRefGoogle Scholar
  62. Kolodny Y, Katz A, Starinsky A, Moise T, Simon E (1999) Chemical tracing of salinity sources in Lake Kinneret (Sea of Galilee), Israel. Limnol Oceanogr 44:1035–1044CrossRefGoogle Scholar
  63. Kühn R (1968) Geochemistry of the German potash deposits. Geol Soc Am Spec Pap 88:427–504CrossRefGoogle Scholar
  64. Land LS (1995) The role of saline formation water in crustal cycling. Aquat Chem 1:137–145Google Scholar
  65. Laube JC, Kaiser J, Sturges WT, Bönisch H, Engel A (2010) Chlorine isotope fractionation in the stratosphere. Science 329:1167CrossRefGoogle Scholar
  66. Lavastre V, Jendrzejewski N, Agrinier P, Javoy M, Evrard M (2005) Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France): 35Cl and 37Cl evidence. Geochim Cosmochim Acta 69:4949–4961CrossRefGoogle Scholar
  67. Layne GD, Kent AJR, Bach W (2009) δ37Cl systematics of a backarc spreading system: the Lau Basin. Geology 37:427–430CrossRefGoogle Scholar
  68. Le Gal La Salle C, Matray JM, Bensenouci F, Michelot JL, Dauzères A, Wittebroodt C, Frape S, Shouakar Stash O, Rebaix R, Lancelot J (2013) Modelling Cl-concentration and δ37Cl profiles in porewater across a 250 m-thick indurated clayrock at the tournemire URL (France). Proc Earth Planet Sc 7:471–474Google Scholar
  69. Li XQ, Zhou AG, Liu YD, Ma T, Liu CF, Liu L, Yang J (2012) Stable isotope geochemistry of dissolved chloride in relation to hydrogeology of the strongly exploited quaternary aquifers, North China Plain. Appl Geochem 27:2031–2041CrossRefGoogle Scholar
  70. Li YP, Jiang SY (2013) Major cation/chlorine ratio and stable chlorine isotopic compositions of sediment interstitial water in the Brazos-Trinity Basin IV from the Gulf of Mexico (IODP 308). J Asian Earth Sci 65:42–50CrossRefGoogle Scholar
  71. Liebscher A, Barnes J, Sharp Z (2006) Chlorine isotope vapor-liquid fractionation during experimental fluid-phase separation at 400 C/23 MPa to 450 C/42 MPa. Chem Geol 234:340–345CrossRefGoogle Scholar
  72. Liu WG, Xiao YK, Wang QZ, Qi HP, Wang YH, Zhou YM, Shirodkar PV (1997) Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China. Chem Geol 136:271–279CrossRefGoogle Scholar
  73. Liu YD, Zhou AG, Gan YQ, Liu CF, Yu TT, Li XQ (2013) An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. J South Centr Univ 20:193–198CrossRefGoogle Scholar
  74. Luo CG, Xiao YK, Ma HZ, Ma YQ, Zhang YL, He MY (2012) Stable isotope fractionation of chlorine during evaporation of brine from a saline lake. Chin Sci Bull 57:1833–1843CrossRefGoogle Scholar
  75. Magenheim AJ, Spivack AJ, Volpe C, Ransom B (1994) Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121CrossRefGoogle Scholar
  76. Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable isotope composition of the oceanic crust: implications for Earth’s distribution of chlorine. Earth Planet Sci Lett 131:427–432CrossRefGoogle Scholar
  77. Mahara Y, Ohta T, Tokunaga T, Matsuzaki H, Nagao K, Nakata E, Miyamoto Y, Kubota T (2013) Pore-water mobility: Distribution of δ37Cl, 36Cl/Cl, 129I/127I and dissolved 4He concentration in the core drilled in the Mobara gas field, Japan. Nucl Instr Meth Phys Res B 294:597–601CrossRefGoogle Scholar
  78. Markl G, Musashi M, Bucher K (1997) Chlorine stable isotope composition of granulites from Lofoten, Norway: Implications for the Cl isotope composition and for the source of Cl enrichment in the lower crust. Earth Planet Sci Lett 150:95–102CrossRefGoogle Scholar
  79. Martin JG (1993) Stable chlorine isotopes in the milk river aquifer, Alberta, Canada: implications for the geochemical evolution of the aquifer system. MSc thesis, Univ ArizonaGoogle Scholar
  80. Matray JM, Meunier A, Thomas M, Fontes JC (1989) Les eaux de formation du Trias et du Dogger du Bassin Parisien: Histoire et effets diagénétiques sur les réservoirs. Bull Soc Nat Elf-Aquitaine (Prod.) 13:484–504Google Scholar
  81. Musashi M, Oi T, Eggenkamp HGM, Matsuo M (2008) Chlorine isotope fractionation associated with volcanic activity at the Kusatsu-Bandaiko hot spring in Japan. Isot Env Health St 44:305–313CrossRefGoogle Scholar
  82. Nakamura N, Nyquist LE, Shih CY, Fujitani T, Okano O (2011) Stable chlorine isotopes and elemental chlorine by thermal ionization mass spectrometry and ion chromatography: martian meteorites, carbonaceous chondrites and standard rocks. In: 42nd lunar and planetary science conference (abstract 2513)Google Scholar
  83. Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. Theory. Geochim Cosmochim Acta 51:683–695Google Scholar
  84. Ransom B, Spivack AJ, Kastner M (1995) Stable Cl isotopes in subduction-zone porewaters: implications for fluid rock reactions and the cycling of chlorine. Geology 23:715–718CrossRefGoogle Scholar
  85. Rebeix R, Le Gal La Salle C, Jean-Baptiste P, Lavastre V, Fourré E, Bensenouci F, Matray JM, Landrein P, Shouakar-Stash O, Frape SK, Michelot JL, Lancelot J (2014) Chlorine transport processes through a 2000 m aquifer/aquitard system. Mar Petr Geol 53:102–116Google Scholar
  86. Richard A, Banks DA, Mercadier J, Boiron MC, Cuney M, Cathelineau M (2011) An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasce Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions. Geochim Cosmochim Acta 75:2792–2810CrossRefGoogle Scholar
  87. Rittenhouse G (1967) Bromine in oil field waters and its use in determining possibilities of origin of these waters. AAPG Bull 17:1213–1228Google Scholar
  88. Rodríguez A, Martínez M, Eggenkamp HGM, van Bergen MJ (2013) Chlorine isotope variations in the hyper-acid lake system of Poás volcano, Costa Rica. IAVCEI 2013 Scientific Assembly, p 58Google Scholar
  89. Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281CrossRefGoogle Scholar
  90. Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636Google Scholar
  91. Selverstone J, Sharp ZD (2011) Chlorine isotope evidence for multicomponent mantle metasomatism in the Ivrea Zone. Earth Planet Sci Lett 310:429–440CrossRefGoogle Scholar
  92. Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254CrossRefGoogle Scholar
  93. Sharp ZD, Barnes JD (2008) Comment to “Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean” by Wei et al. A review of the Cl isotope composition of serpentinites and the global chlorine cycle. Earth Planet Sci Lett 274:531–534Google Scholar
  94. Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065CrossRefGoogle Scholar
  95. Sharp ZD, Barnes JD, Fischer TP, Halick M (2010a) An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles. Geochim Cosmochim Acta 74:264–273CrossRefGoogle Scholar
  96. Sharp ZD, Shearer CK, McKeagan KD, Barnes JD, Wang YQ (2010b) The chlorine isotope composition of the moon and implications for an anhydrous mantle. Science 329:1050–1053CrossRefGoogle Scholar
  97. Sharp ZD, Selverstone J, Mercer JA (2011) The Cl isotope composition of the mantle revisited. In: 21th annual V.M. Goldschmidt conference. Prague, Czech Republic (Mineral Mag 75:1848)Google Scholar
  98. Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, Bekker A, Stachel T (2013) The chlorine isotope composition of chondrites and earth. Geochim Cosmochim Acta 107:189–204CrossRefGoogle Scholar
  99. Shields WR, Murphy TJ, Garner EL, Dibeler VH (1962) Absolute isotopic abundance ratios and the isotopic weight of chlorine. J Amer Chem Soc 84:1519–1522CrossRefGoogle Scholar
  100. Shirodkar PV, Xiao YK, Hai L (2003) Boron and chlorine isotopic signatures of seawater in the Central Indian ridge. Current Sci 85:313–320Google Scholar
  101. Shirodkar PV, Xiao YK, Sarkar A, Dalal SG, Chivas AR (2006) Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in δ37Cl—A statistical inference. Environ Intern 32:235–239CrossRefGoogle Scholar
  102. Shouakar-Stash O (2008) Evaluation of stable chlorine and bromine isotopes in sedimentary formation fluids. PhD thesis University of WaterlooGoogle Scholar
  103. Shouakar-Stash O, Frape SK, Drimmie RJ (2005) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033CrossRefGoogle Scholar
  104. Shouakar-Stash O, Frape SK, Rostron BJ, Drimmie RJ (2006) Variations of the δ81Br and δ37Cl stable isotope signature for pre-Mississippian formation waters of the Williston Basin. In: Abstract presented at the Goldschmidt conference (Geochim Cosmochim Acta 70(suppl):A589)Google Scholar
  105. Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotope signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22:589–605CrossRefGoogle Scholar
  106. Sie PMJ, Frape SK (2002) Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes. Chemical Geology 182:565–582CrossRefGoogle Scholar
  107. Siemann MG (2003) Extensive and rapid changes in seawater chemistry during the Phanerozoic: evidence from Br contents in basal halite. Terra Nova 15:243–248CrossRefGoogle Scholar
  108. Stewart MA (2000) Geochemistry of dikes and lavas from Hess Deep: implication for crustal construction processes beneath mid-oceanic ridges and the stable chlorine isotope geochemistry of mid-ocean ridge basalts. PhD dissertation thesis, Duke University, Durham, North CarolinaGoogle Scholar
  109. Stiller M, Nissenbaum A, Kaufmann RS, Long A (1998) Cl-37 in the Dead Sea system—preliminary results. Appl Geochem 13:953–960CrossRefGoogle Scholar
  110. Stiller M, Rosenbaum JM, Nishri A (2009) The origin of brines underlying Lake Kinneret. Chem Geol 262:293–309CrossRefGoogle Scholar
  111. Stotler RL, Frape SK, Shouakar-Stash O (2010) An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian shields. Chem Geol 274:38–55CrossRefGoogle Scholar
  112. Tan HB, Ma HZ, Xiao YK, Wei HZ, Zhang XY, Ma WD (2005) Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in western Tarim basin. Sc China (ser D) 48:1913–1920Google Scholar
  113. Tan HB, Ma HZ, Wei HZ, Xu JX, Li TW (2006) Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China. Geochem J 40:569–577CrossRefGoogle Scholar
  114. Tan HB, Ma HZ, Zhang XY, Xu JX, Xiao YK (2009) Fractionation of chlorine isotope in salt mineral sequences and application: research on sedimentary stage of ancient salt rock deposit in Tarim Basin and western Qaidam Basin. Acta Petrol Sinica 25:955–962 (in Chinese with English abstract)Google Scholar
  115. Tanaka N, Rye DM (1991) Chlorine in the stratosphere. Nature 353:707CrossRefGoogle Scholar
  116. Thornton B, Horst A, Carrizo D, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) A high-volume cryosampler and sample purification system for bromine isotope studies of methyl bromide. J Atmos Ocean Techn 30:2095–2107CrossRefGoogle Scholar
  117. Valyashko MG (1956) Geochemsitry of bromide in the process of salt depositition and the use of the bromide content as a genetic and prospecting tool. Geochem Int 6:570–587Google Scholar
  118. Van’t Hoff JH (1905) Zur Bildung der ozeanischen Salzablagerungen. Teil 1. 85 p. Fr. ViewegGoogle Scholar
  119. Van’t Hoff JH (1909) Zur Bildung der ozeanischen Salzablagerungen. Teil 2. 90 p. Fr. ViewegGoogle Scholar
  120. Van’t Hoff JH (1912) Untersuchungen über die Bildungsverhältnisse der ozeanischen Salzablagerungen. 374 p. Leipzig; Akad Verl Ges (Reprint of the original papers taken from S-B Kgl Preuß Akad, 1897–1908Google Scholar
  121. Van’t Hoff JH, Mayerhoffer W (1897) Untersuchungen über die Bildungsverhältnisse der oceanischen Salzablagerungen, insbesondere des Stassfurter Salzlagers. Sitzungsb. Kön Preuß. Akad. Wissenschaften 1897:69–75Google Scholar
  122. Wahrenberger C, Eastoe CJ, Seward TM, Dietrich V (1997) Stable chlorine isotope composition of volcanic gas condensates. In: 7th annual Goldschmidt conference, Tucson, Az. p 213Google Scholar
  123. Wassenaar LI, Koehler G (2004) On-line technique for the determination of the δ37Cl of inorganic and total organic Cl in environmental samples. Anal Chem 76:6384–6388CrossRefGoogle Scholar
  124. Wei W, Kastner M, Spivack A (2008a) Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean. Earth Planet Sci Lett 266:90–104CrossRefGoogle Scholar
  125. Wei W, Kastner M, Spivack A (2008b) Reply to comment on: “Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean”. Earth Planet Sci Lett 274:535CrossRefGoogle Scholar
  126. Willey JF, Taylor JW (1978) Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and bromide. Anal Chem 50:1930–1933CrossRefGoogle Scholar
  127. Wirt L (1988) The origin of chloride in groundwater in the Stripa granite, Sweden. MSc thesis, Univ ArizonaGoogle Scholar
  128. Xiao YK, Liu WG, Qi HP, Zhang CG (1993) A new method for the high precision isotopic measurement of bromine by thermal ionization mass spectrometry. Intl J Mass Spectrom Ion Proc 123:117–123CrossRefGoogle Scholar
  129. Xiao YK, Liu WG, Zhou YM, Sun DP (1997) Isotope compositions of chlorine in brine and saline minerals. Chin Sci Bull 42:406–409CrossRefGoogle Scholar
  130. Xiao YK, Liu WG, Zhou YM, Wang YH, Shirodkar PV (2000) Variations in isotopic compositions of chlorine in evaporation controlled salt lake brines of Qaidam Basin, China. Chin J Ocean Limn 18:169–177CrossRefGoogle Scholar
  131. Xiao YK, Zhou YM, Wang QZ. Wei HZ, Liu WG, Eastoe CJ (2002) A secondary isotopic reference material of chlorine from selected seawater. Chem Geol 182:655–661Google Scholar
  132. Ziegler K, Coleman ML, Howarth RJ (2001) Palaeohydrodynamics of fuids in the Brent Group (Oseberg Field, Norwegian North Sea) from chemical and isotopic compositions of formation waters. Appl Geochem 16:609–632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations