Advanced Line Visualization for HARDI

Part of the Informatik aktuell book series (INFORMAT)


Diffusion imaging is a non-invasive technique providing information about neuronal connections. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to model the diffusion pattern in more detail. Tractography approaches reconstruct fiber pathways and result in line representations, approximating the underlying diffusion behavior. However, these line visualizations often suffer from visual clutter and weak depth perception more than reconstructions resulting from DTI, since multiple fibers potentially run within one voxel. In this approach illustrative rendering methods such as depth-dependent halos and ambient occlusion for line data are presented in combination with crucial tract information such as the direction and integrity for HARDI-based fiber representations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merhof D, Sonntag M, Enders F, et al. Hybrid visualization for white matter tracts using triangle strips and point sprites. IEEE Trans Vis Comput Graph. 2006;12:1181–88.CrossRefGoogle Scholar
  2. 2.
    Everts M, Bekker H, Roerdink J, et al. Depth-dependent halos: illustrative rendering of dense line data. IEEE Trans Vis Comput Graph. 2009;15:1299–306.CrossRefGoogle Scholar
  3. 3.
    Otten R, Bartroli AV, van de Wetering HMM. Illustrative white matter fiber bundles. Comput Graph Forum. 2010;29(3):1013–22.CrossRefGoogle Scholar
  4. 4.
    Poupon C, Poupon F, Allirol L, et al. A database dedicated to anatomo-functional study of human brain connectivity. 12th HBM Neuroimage. 2006;12(646).Google Scholar
  5. 5.
    Rottger D, Seib V, Muller S. Distance-based tractography in high angular resolution diffusion imaging. The Visual Comput. 2011;27:729–39.CrossRefGoogle Scholar
  6. 6.
    Rottger D, Dudai D, Merhof D, et al. ISMI: a Classification Index for High Angular Resolution Diffusion Imaging. Proc SPIE. 2012.Google Scholar
  7. 7.
    Mittring M. Finding next gen: CryEngine 2. ACM SIGGRAPH 2007 Courses. 2007; p. 97–121.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Computational VisualisticsUniversity of Koblenz-LandauKoblenz-LandauDeutschland

Personalised recommendations