Visualizing Human Genes on Manifolds Embedded in Three-Dimensional Space

  • Wei-Chen Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7197)


This work provides a visualization tool for researchers to explore the geometry of the distribution of human protein-coding DNA in three-dimensional space by applying various manifold learning techniques, which preserve distinct relations among genes. The simulations suggest that the relations hidden among genetic sequences could be explored by the manifolds embedded in Euclidean space. Operating this software, users are able to rotate, scale and shift the three-dimensional spaces in an interactive manner.


Manifold Learning Longe Common Subsequence Wellcome Trust Sanger Institute Manifold Space Inverse Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burdick, K.E., Lencz, T., Funke, B., Finn, C.T., Szeszko, P.R., Kane, J.M., Kucherlapati, R., Malhotra, A.K.: Genetic Variation in DTNBP1 Influences General Cognitive Ability. Human Molecular Genetics 15, 1563–1568 (2006)CrossRefGoogle Scholar
  2. 2.
    Cheng, W.-C., Liou, C.-Y.: Manifold Construction Based on Local Distance Invariance. Memetic Computing 2, 149–160 (2010)CrossRefGoogle Scholar
  3. 3.
    Cheng, W.-C., Liou, C.-Y.: Visualization of Influenza A Protein Segments in Distance Invariant Self-organizing Map. International Journal of Intelligent Information and Database SystemsGoogle Scholar
  4. 4.
    Gleich, D.F.: Models and Algorithms for PageRank Sensitivity. Thesis in Stanford University (2009)Google Scholar
  5. 5.
    Johnson, D.B.: A Priority Queue in which Initialization and Queue Operations Take O(log log D) Time. Mathematical Systems Theory 15, 295–309 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kitts, P.: Genome Assembly and Annotation Process. In: The NCBI Handbook, National Library of Medicine, Bethesda, MD (2002),
  7. 7.
    Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krejcar, O., Janckulik, D., Motalova, L.: Complex Biomedical System with Biotelemetric Monitoring of Life Functions. In: Proceedings of the IEEE Eurocon, pp. 138–141 (2009)Google Scholar
  9. 9.
    Krejcar, O., Janckulik, D., Motalova, L.: Complex Biomedical System with Mobile Clients. In: IFMBE Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2009. IFMBE Proceedings, vol. 25/5, pp. 141–144. Springer, Munich (2009)Google Scholar
  10. 10.
    Levenberg, K.: A Method for the Solution of Certain Non-linear Problems in Least Squares. The Quarterly of Applied Mathematics 2, 164–168 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lin, K., Dorman, J.B., Rodan, A., Kenyon, C.: Daf-16: An HNF-3/forkhead Family Member that can Function to Double the Life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997)CrossRefGoogle Scholar
  12. 12.
    Liou, C.-Y., Musicus, B.R.: A Separable Cross-entropy Approach to Power Spectral Estimation. IEEE Transactions on Acoustics, Speech and Signal Processing 38, 105–111 (1990)CrossRefGoogle Scholar
  13. 13.
    Liou, C.-Y., Cheng, W.-C.: Manifold Construction by Local Neighborhood Preservation. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 683–692. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lu, Z.X., Huang, Q., Su, B.: Functional Characterization of the Human-specific (type II) Form of Kallikrein 8, a Gene Involved in Learning and Memory. Cell Research 19, 259–267 (2009)CrossRefGoogle Scholar
  15. 15.
    Marquardt, D.: An Algorithm for Least-squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics 11, 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Potter, S.C., Clarke, L., Curwen, V., Keenan, S., Mongin, E., Searle, S.M., Stabenau, A., Storey, R., Clamp, M.: The Ensembl Analysis Pipeline. Genome Research 14, 934–941 (2004)CrossRefGoogle Scholar
  17. 17.
    Pruitt, K.D., Harrow, J., Harte, R.A., et al.: The Consensus Coding Sequence (CCDS) Project: Identifying a Common Protein-coding Gene Set for the Human and Mouse Genomes. Genome Research 19, 1316–1323 (2009)CrossRefGoogle Scholar
  18. 18.
    de Silva, V., Tenenbaum, J.B.: Global versus Local Methods in Nonlinear Dimensionality Reduction. In: Advances in Neural Information Processing Systems, vol. 15, pp. 705–712 (2002)Google Scholar
  19. 19.
    Sankoff, D., Kruskal, J.B. (eds.): Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison. Addison-Wesley (1983)Google Scholar
  20. 20.
    Tenenbaum, J., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  21. 21.
    Torgerson, W.S.: Multidimensional Scaling, I: Theory and Method. Psychometrika 17, 401–419 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, Y.-Q., Qian, Y.-P., Yang, S., Shi, H., Liao, C.-H., Zheng, H.-K., Wang, J., Lin, A.A., Cavalli-Sforza, L.L., Underhill, P.A., Chakraborty, R., Jin, L., Su, B.: Accelerated Evolution of the Pituitary Adenylate Cyclase-activating Polypeptide Precursor Gene during Human Origin. Genetics 170, 801–806 (2005)CrossRefGoogle Scholar
  23. 23.
    Wu, J.-M., Lin, Z.-H., Hsu, P.H.: Function Approximation using Generalized Adalines. IEEE Transactions on Neural Networks 17, 541–558 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei-Chen Cheng
    • 1
  1. 1.Institute of Statistical ScienceAcademia SinicaRepublic of China

Personalised recommendations