Skip to main content

Learning and Inference Order in Structured Output Elements Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7196))

Abstract

In the paper three learning and inference ordering approaches in the method for structured output classification are presented. As it was previously presented by authors, classification of single element in output structure can be performed by generalization of input attributes as well as already partially classified output elements [9]. The paper addresses crucial problem of how to order elements in the structured learning process to get greater final accuracy. The learning is performed by means of ensemble, boosting classification method adapted to structured prediction - AdaBoostSeq algorithm. Authors present several ordering heuristics for score function application in order to obtain better structured output classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins, M.: Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In: Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 1–8 (2002)

    Google Scholar 

  2. Daume, H., Marcu, D.: Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction. In: International Conference on Machine Learning, ICML 2005 (2005)

    Google Scholar 

  3. Daume, H., Langford, J., Marcu, D.: Search-based structured prediction. Machine Learning 75, 297–325 (2009)

    Article  Google Scholar 

  4. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 3005 ACM Conference on Information and Knowledge Management, pp. 195–200 (2005)

    Google Scholar 

  6. Kajdanowicz, T., Kazienko, P.: Prediction of Sequential Values for Debt Recovery. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 337–344. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Kajdanowicz, T., Kazienko, P.: Boosting-based Sequence Prediction. New Generation Computing 29(3), 293–307 (2011)

    Article  MATH  Google Scholar 

  8. Kazienko, P., Kajdanowicz, T.: Base Classifiers in Boosting-based Classification of Sequential Structures. Neural Network World 20, 839–851 (2010)

    Google Scholar 

  9. Kajdanowicz, T., Kazienko, P.: Structured Output Element Ordering in Boosting-Based Classification. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 221–228. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, ICML 2001, pp. 282–289 (2001)

    Google Scholar 

  11. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Machine Learning 39, 135–168 (2000)

    Article  MATH  Google Scholar 

  12. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Advances in Neural Information Processing Systems, vol. 16, pp. 25–32. MIT Press, Cambridge (2004)

    Google Scholar 

  13. Theodoris, S., Koutroumbas, K.: Pattern Recognition. Elsevier (2009)

    Google Scholar 

  14. Tsochantaridis, I., Hofmann, T., Thorsten, J., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18, 1338–1351 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kajdanowicz, T., Kazienko, P. (2012). Learning and Inference Order in Structured Output Elements Classification. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science(), vol 7196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28487-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28487-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28486-1

  • Online ISBN: 978-3-642-28487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics