Theories of Superconductivity

  • Ajay Kumar Saxena
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 125)


Theoretical understanding of the phenomenon of superconductivity came more than 50 years after its discovery. A famous comprehensive microscopic theory of superconductivity of superconductivity was developed by Barden, Cooper and Schrieffer in 1957 [1], named as BCS theory. It has also amazingly good quantitative success in explaining several important parameters characterising the superconducting behaviour in materials. Prior to the BCS theory, it had been suggested by several physicists that lattice valuations of the material might play an important part in superconductivity. It becomes evident from the following developments, which took place before the advent of the BCS theory


Fermi Surface Superconducting State Cooper Pair Valence Bond Nuclear Quadrupole Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H. Ibach, H. Luth, Solid State Physics (Springer, Heidelberg, 1996)CrossRefGoogle Scholar
  3. 3.
    G. Baskaran, in High Temperature Superconductors, ed. by S.V. Subramanyam, E.S.R. Gopal (Wiley Eastern Limited, New Delhi, 1989)Google Scholar
  4. 4.
    J.R. Schrieffer, Phys. Rev. Lett. 60, 944 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    K. Lyons, Science 247, 1410 (1990)Google Scholar
  6. 6.
    G.J. Canright, S.M. Girvin, Science 247, 1197 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Martindale, S.E. Barrett, K.E.O. Hara, C.P. Slichter, W.C. Lee, D.M. Ginsberg, Phys. Rev. B 47, 9155 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. (Submitted 1993)Google Scholar
  9. 9.
    D.H. Wu, J. Mao, S.N. Mao, J.L. Peng, X.X. Xi, T. Venkatesan, R.L. Greene, S.M. Anlage, Phys. Rev. Lett. 70, 85 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    V. J. Emery, Nature 370, 598–598 (1994)Google Scholar
  11. 11.
    P.B. Allen, Nature 375, 188–189 (1995)Google Scholar
  12. 12.
    Z.X. Shen, D.S. Dessau, B.O. Wells, D.M. King, W.E. Spicer, A.J. Arko, D. Marshall, L.W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. Di-Carlo, T. Loeser, C.H. Park, Phys. Rev. Lett. 70, 1553 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    B.G. Levi, Phys. Today, 17–20 (1993)Google Scholar
  14. 14.
    M. Gurvitch, J.M. Valles (Jr.), A.M. Cucolo, R.C. Dynes, J.P. Garno, L.F. Schneemeyer, J.V. Waszczaki, Phys. Rev. Lett. 63, 1008 (1989)Google Scholar
  15. 15.
    S. Uchida, Jpn. J. Appl. Phys. 32 (Part. 1, No. 9A) 3784 (1993)Google Scholar
  16. 16.
    J.F. Zasadzinski, N. Tralshawara, P. Romano, Q. Huang, Jun Chen, K.E. Gray. J. Phys. Chem. Solids 53, 1635 (1992)Google Scholar
  17. 17.
    T. Hasegawa, M. Nantoh, A. Takagi, H-Ikuta, M. Kawasaki, H. Koinuma, K. Kitazawa. J. Phys. Chem. Solids 53, 1643 (1992)Google Scholar
  18. 18.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    A.J. Millis, H. Monien, D. Pines, Phys. Rev. B 42, 167 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    P.W. Anderson, R. Schrieffer, Phys. Today, 55–61 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsAwadhesh Pratap Singh UniversityRewaIndia

Personalised recommendations