Advertisement

Using Functional Dependencies for Reducing the Size of a Data Cube

  • Eve Garnaud
  • Sofian Maabout
  • Mohamed Mosbah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7153)

Abstract

Functional dependencies (FD’s) are a powerful concept in data organization. They have been proven very useful in e.g., relational databases for reducing data redundancy. Little work however has been done so far for using them in the context of data cubes. In the present paper, we propose to characterize the parts of a data cube to be materialized with the help of the FD’s present in the underlying data. For this purpose, we consider two applications: (i) how to choose the best cuboids of a data cube to materialize in order to guarantee a fixed performance of queries and, (ii) how to choose the best tuples, hence partial cuboids, in order to reduce the size of the data cube without loosing information. In both cases we show how FD’s are fundamental.

Keywords

Functional Dependency Query Evaluation Data Cube Fact Table Aggregate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Baralis, E., Paraboschi, S., Teniente, E.: Materialized view selection in a multidimensional database. In: Proceedings of VLDB Conference, pp. 156–165 (1997)Google Scholar
  3. 3.
    Bauer, A., Lehner, W.: On solving the view selection problem in distributed data warehouse architectures. In: Proceedings of SSDBM Conference, pp. 43–54. IEEE Computer Society (2003)Google Scholar
  4. 4.
    Beeri, C., Bernstein, P.A., Goodman, N.: A sophisticate’s introduction to database normalization theory. In: Proceedings of VLDB Conference, pp. 113–124 (1978)Google Scholar
  5. 5.
    Blakeley, J.A., Larson, P.-Å., Tompa, F.W.: Efficiently updating materialized views. In: Proceedings of SIGMOD Conference, pp. 61–71. ACM (1986)Google Scholar
  6. 6.
    Bra, P.D., Paredaens, J.: Conditional Dependencies for Horizontal Decompositions. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 67–82. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  7. 7.
    Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: Proceedings of VLDB Conference (2007)Google Scholar
  8. 8.
    Bruno, N.: Automated Physical Database Design and Tuning. CRC Press Inc. (2011)Google Scholar
  9. 9.
    Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes using cube transversals and closures. In: Proceedings of ACM KDD Conference, pp. 69–78. ACM (2003)Google Scholar
  10. 10.
    Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Closed cube lattices. In: New Trends in Data Warehousing and Data Analysis. Annals of Information Systems, vol. 3, pp. 1–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Chaudhuri, S., Lee, H., Narasayya, V.R.: Variance aware optimization of parameterized queries. In: Proceedings of SIGMOD Conference (2010)Google Scholar
  12. 12.
    Chiang, F., Miller, R.J.: Discovering data quality rules. In: Proceedings of VLDB Conference, vol. 1(1), pp. 1166–1177 (2008)Google Scholar
  13. 13.
    Codd, E.F.: Normalized data base structure: A brief tutorial. IBM Research Report, San Jose, California, RJ935 (1971)Google Scholar
  14. 14.
    Codd, E.F.: A relational model of data for large shared data banks (reprint). Communications of ACM 26(1), 64–69 (1983)CrossRefGoogle Scholar
  15. 15.
    Golab, L., Karloff, H.J., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal tableaux for conditional functional dependencies. In: Proceedings VLDB Conference, vol. 1(1), pp. 376–390 (2008)Google Scholar
  16. 16.
    Graefe, G.: Query evaluation techniques for large databases. ACM Computing Surveys 25(2), 73–170 (1993)CrossRefGoogle Scholar
  17. 17.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)CrossRefGoogle Scholar
  18. 18.
    Hanusse, N., Maabout, S., Tofan, R.: A view selection algorithm with performance guarantee. In: Proceedings of EDBT Conference. ACM International Conference Proceeding Series, vol. 360, pp. 946–957. ACM (2009)Google Scholar
  19. 19.
    Hanusse, N., Maabout, S., Tofan, R.: Revisiting the Partial Data Cube Materialization. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 70–83. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently. In: Proceedings of SIGMOD Conference, pp. 205–216. ACM Press (1996)Google Scholar
  21. 21.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for discovering functional and approximate dependencies. Computer Journal 42(2), 100–111 (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Karloff, H., Mihail, M.: On the complexity of the view-selection problem. In: Proceedings of PODS Conference, pp. 167–173. ACM (1999)Google Scholar
  23. 23.
    Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: Proceedings of VLDB Conference. VLDB Endowment, pp. 778–789 (2002)Google Scholar
  24. 24.
    Li, J., Talebi, Z., Chirkova, R., Fathi, Y.: A Formal Model for the Problem of View Selection for Aggregate Queries. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 125–138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Mannila, H., Räihä, K.-J.: Design of Relational Databases. Addison-Wesley (1992)Google Scholar
  26. 26.
    Microsoft, SqL Server: Database Engine Tuning Advisor, msdn.microsoft.com/en-us/library/ms173494.aspx
  27. 27.
    Niemi, T., Nummenmaa, J., Thanisch, P.: Normalising olap cubes for controlling sparsity. Data & Knowledge Engineering 46(3), 317–343 (2003)CrossRefGoogle Scholar
  28. 28.
    Novelli, N., Cicchetti, R.: FUN: An Efficient Algorithm for Mining Functional and Embedded Dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Saint-Paul, R., Raschia, G., Mouaddib, N.: General purpose database summarization. In: Proceedings of VLDB Conference, pp. 733–744 (2005)Google Scholar
  31. 31.
    Shukla, A., Deshpande, P., Naughton, J.: Materialized view selection for multidimensional datasets. In: Proceedings of VLDB Conference, pp. 488–499 (1998)Google Scholar
  32. 32.
    Shukla, A., Deshpande, P.M., Naughton, J.F.: Materialized View Selection for Multi-cube Data Models. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 269–284. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Wang, W., Feng, J., Lu, H., Yu, J.X.: Condensed cube: An effective approach to reducing data cube size. In: Proceedings of ICDE Conference, pp. 155–165. IEEE (2002)Google Scholar
  34. 34.
    Xin, D., Shao, Z., Han, J., Liu, H.: C-cubing: Efficient computation of closed cubes by aggregation-based checking. In: Proceedings of ICDE Conference (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eve Garnaud
    • 1
  • Sofian Maabout
    • 1
    • 2
  • Mohamed Mosbah
    • 1
  1. 1.LaBRI, CNRS, UMR 5800University of BordeauxTalenceFrance
  2. 2.INRIA-Bordeaux Sud OuestFrance

Personalised recommendations